Ushbu tadqiqot ishida maxsus o‘ziyurar harakat tarkibi, xususan,
O‘zbekiston Respublikasi temiryo‘l transportida ekspluatatsiya qilinadigan
ADM (автоматрица дизельная монтажная) turidagi texnik vositalarning
ishonchliligiga ta’sir qiluvchi asosiy omillar har tomonlama tahlil qilingan.
Ishonchlilikning asosiy ko‘rsatkichlari – o‘rtacha ishdan chiqish vaqti, nosozliklarsiz
ishlash ehtimoli, ishlamay qolish darajasi hamda gamma foizli ishlash muddati
atroflicha ko‘rib chiqilgan va ularni hisoblash hamda miqdoriy baholash usullari
asoslab berilgan. Tadqiqotda elektromexanik uskunalarning asinxron dvigatellar va
muftalar bilan ishlovchi tugunlarining ishdan chiqish qonuniyatlari statistik tahlil
asosida o‘rganilgan. Bu qonuniyatlar, asosan, eksponensial va normal taqsimotlar
bilan ifodalanishi aniqlangan. Taqsimot zichligini yaqinlashtiruvchi matematik
formulalar orqali ishonchlilik ko‘rsatkichlarini qayta kalibrlash imkoniyati
asoslab berilgan. Tadqiqot davomida 2019–2023-yillar oralig‘ida 174 dona
ADM turidagi avtomotrisaning texnik holatiga doir diagnostika bayonnomalari
hamda ekspluatatsiya hujjatlari asosida buzilishlar va nosozliklar tahlil qilingan.
Shuningdek, mexanik, elektr va gidravlik tizimlarining ishonchlilik ko‘rsatkichlari
baholangan, nosozliklarning asosiy sabablari aniqlangan va ularning umumiy
tizim ishonchliligiga ta’siri tahlil etilgan. Ilmiy yangilik sifatida avtomotrisalarning
ekspluatatsion holati parametrlarini hisobga oluvchi regressiya modeli ishlab
chiqilgan bo‘lib, u ishonchlilikni bashorat qilish imkonini beradi. Olingan
natijalar asosida ekspluatatsiya rejimlarini optimallashtirish va texnik xizmat
ko‘rsatish tizimini takomillashtirish orqali harakat tarkibining ishonchliligini
oshirish bo‘yicha takliflar ishlab chiqilgan. Tadqiqotning amaliy ahamiyati
shundan iboratki, taklif etilgan metodika mavjud statistik ma’lumotlar asosida
texnik vositalarning ishonchliligini samarali baholash, shu bilan birga, harakat
tarkibining ekspluatatsion tayyorligini oshirish va resursdan samarali foydalanishni
ta’minlashda boshqaruv qarorlarini qabul qilishda muhim vosita bo‘lib xizmat qiladi.
Ushbu tadqiqot ishida maxsus o‘ziyurar harakat tarkibi, xususan,
O‘zbekiston Respublikasi temiryo‘l transportida ekspluatatsiya qilinadigan
ADM (автоматрица дизельная монтажная) turidagi texnik vositalarning
ishonchliligiga ta’sir qiluvchi asosiy omillar har tomonlama tahlil qilingan.
Ishonchlilikning asosiy ko‘rsatkichlari – o‘rtacha ishdan chiqish vaqti, nosozliklarsiz
ishlash ehtimoli, ishlamay qolish darajasi hamda gamma foizli ishlash muddati
atroflicha ko‘rib chiqilgan va ularni hisoblash hamda miqdoriy baholash usullari
asoslab berilgan. Tadqiqotda elektromexanik uskunalarning asinxron dvigatellar va
muftalar bilan ishlovchi tugunlarining ishdan chiqish qonuniyatlari statistik tahlil
asosida o‘rganilgan. Bu qonuniyatlar, asosan, eksponensial va normal taqsimotlar
bilan ifodalanishi aniqlangan. Taqsimot zichligini yaqinlashtiruvchi matematik
formulalar orqali ishonchlilik ko‘rsatkichlarini qayta kalibrlash imkoniyati
asoslab berilgan. Tadqiqot davomida 2019–2023-yillar oralig‘ida 174 dona
ADM turidagi avtomotrisaning texnik holatiga doir diagnostika bayonnomalari
hamda ekspluatatsiya hujjatlari asosida buzilishlar va nosozliklar tahlil qilingan.
Shuningdek, mexanik, elektr va gidravlik tizimlarining ishonchlilik ko‘rsatkichlari
baholangan, nosozliklarning asosiy sabablari aniqlangan va ularning umumiy
tizim ishonchliligiga ta’siri tahlil etilgan. Ilmiy yangilik sifatida avtomotrisalarning
ekspluatatsion holati parametrlarini hisobga oluvchi regressiya modeli ishlab
chiqilgan bo‘lib, u ishonchlilikni bashorat qilish imkonini beradi. Olingan
natijalar asosida ekspluatatsiya rejimlarini optimallashtirish va texnik xizmat
ko‘rsatish tizimini takomillashtirish orqali harakat tarkibining ishonchliligini
oshirish bo‘yicha takliflar ishlab chiqilgan. Tadqiqotning amaliy ahamiyati
shundan iboratki, taklif etilgan metodika mavjud statistik ma’lumotlar asosida
texnik vositalarning ishonchliligini samarali baholash, shu bilan birga, harakat
tarkibining ekspluatatsion tayyorligini oshirish va resursdan samarali foydalanishni
ta’minlashda boshqaruv qarorlarini qabul qilishda muhim vosita bo‘lib xizmat qiladi.
В данном исследовании всесторонне проанализированы основ-
ные факторы, влияющие на надёжность специального самоходного подвиж-
ного состава, в частности автомотрис монтажного типа с дизельным
двигателем (АДМ), эксплуатируемых на железнодорожном транспорте
Республики Узбекистан. Рассмотрены ключевые показатели надёжности:
среднее время безотказной работы, вероятность безотказной эксплуата-
ции, уровень отказов и гамма-процентный срок службы. Обоснованы ме-
тоды расчёта и количественной оценки указанных показателей. На основе
статистического анализа исследованы закономерности выхода из строя уз-
лов электромеханического оборудования, функционирующих с асинхронными
двигателями и муфтами. Установлено, что эти закономерности описывются преимущественно экспоненциальным и нормальным распределениями. Обоснована возможность перекалибровки показателей надёжности с ис-
пользованием приближённых математических формул для плотности рас-
пределения. В ходе исследования проанализированы данные о техническом
состоянии 174 автомотрис типа АДМ за период 2019–2023 годов, собранные
на основе диагностических актов и эксплуатационной документации. Оцене-
ны показатели надёжности механических, электрических и гидравлических
систем, выявлены основные причины отказов и их влияние на общую надёж-
ность системы. Научной новизной работы является разработка регрессион-
ной модели, учитывающей параметры эксплуатационного состояния авто-
мотрис и позволяющей прогнозировать уровень их надёжности. На основе
полученных результатов разработаны предложения по повышению надёж-
ности подвижного состава за счёт оптимизации режимов эксплуатации и
совершенствования системы технического обслуживания. Практическая
значимость исследования заключается в том, что предложенная методи-
ка позволяет эффективно оценивать надёжность технических средств на
основе существующих статистических данных и служит важным инстру-
ментом для принятия управленческих решений, направленных на повышение
эксплуатационной готовности подвижного состава и эффективное исполь-
зование ресурсов.
This research presents a comprehensive analysis of the main factors
affecting the reliability of special self-propelled rolling stock, specifically the ADM
(Avtomotrisa Diesel Mounting) units used in the railway transport system of the
Republic of Uzbekistan. Particular attention is given to key reliability indicators
such as the mean time to failure (MTTF), probability of failure-free operation,
failure rate, and the gamma-percentile life. The study discusses methods for
calculating these indicators and approaches for their quantitative assessment.
The study looked at how different parts of electromechanical equipment, which
work with asynchronous motors and couplings, fail. It was determined that these
failure distributions generally conform to exponential and normal distribution
laws. Mathematical formulas expressing the approximated density of the
reliability distribution are provided, offering more accurate recalibration of
reliability indicators. The analysis is based on technical data from 174 ADM-type
railcars over the period from 2019 to 2023. Diagnostic reports and operational
documents were used as primary sources for evaluating breakdowns and failures.
The study examines the reliability of mechanical, electrical, and hydraulic systems,
identifies the main causes of malfunctions, and assesses their impact on overall
system reliability. The scientific novelty lies in the development of a predictive
model for reliability assessment based on the operational condition parameters
of the railcars and the construction of a regression equation. The obtained
results demonstrate the potential for improving reliability through optimization
of operating modes and enhancement of maintenance systems. The practical
significance of this research is that the proposed methodology allows for effective
evaluation of equipment reliability using statistical data. Moreover, it serves as
a valuable tool for making informed management decisions aimed at extending
service life and improving the operational readiness of rolling stock.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Gulamova M.D. | mustaqil izlanuvchi, “Harakatlanish tarkibidan foydalanish” kafedra mudiri | Toshkent transport texnikumi |
2 | Muxamedova .G. | texnika fanlari doktori (DcS), “Yuk-transport tizimlari” kafedrasi professori | Toshkent davlat transport universiteti |
3 | Ahmedov S.X. | mustaqil izlanuvchi, Xalqaro hamkorlik bo‘limi boshlig‘i | “O‘zbekiston temiryo‘llari” AJ |
№ | Name of reference |
---|---|
1 | Anyakwo, A., Pislaru, C., Ball, A., & Gu, F. (2012). Modelling and simulation of dynamic wheel- rail interaction using a roller rig. Journal of Physics: Conference Series, 364(1), 012060. https://doi. org/10.1088/1742-6596/364/1/012060 |
2 | Auciello, J., Meli, E., Falomi, S., & Malvezzi, M. (2009). Dynamic simulation of railway vehicles: Wheel/rail contact analysis. Vehicle System Dynamics, 47(7), 867–899. https://doi. org/10.1080/00423110802464624 |
3 | Bogdevicius, M., & Zygiene, R. (2015). Simulation of dynamic processes of rail vehicle and rail with irregularities. Journal of KONES Powertrain and Transport, 21(2), 21–26. https://doi. org/10.5604/12314005.1133858 |
4 | Bruni, S., Goodall, R., Mei, T., & Tsunashima, H. (2007). Control and monitoring for railway vehicle dynamics. Vehicle System Dynamics, 45(7–8), 743–779. https://doi. org/10.1080/00423110701426690 |
5 | Bruni, S., Vinolas, J., Berg, M., Polach, O., & Stichel, S. (2011). Modelling of suspension components in a rail vehicle dynamics context. Vehicle System Dynamics, 49(7), 1021–1072. https:// doi.org/10.1080/00423114.2011.586430 |
6 | Bureika, G., & Subacius, R. (2002). Mathematical model of dynamic interaction between wheel- set and rail track. Transport, 17(2), 46–51. https://doi.org/10.3846/16483480.2002.10414010 |
7 | Carlbom, P. (2001). Combining MBS with FEM for rail vehicle dynamics analysis. Multibody System Dynamics, (6), 291–300. https://doi.org/10.1023/a:1012072405882 |
8 | Eulitz, K.-G., & Kotte, K. L. (2000). Damage accumulation-limitations and perspectives for fatigue life assessment. In Proc. Material Week, Sankt Augustin/Germany, Deutsche Gesellschaft für Materialkunde e.V. (pp. 25–28). www.materialsweek.org/proceedings/ |
9 | Evans, J., & Berg, M. (2009). Challenges in simulation of rail vehicle dynamics. Vehicle System Dynamics, 47(8), 1023–1048. https://doi.org/10.1080/00423110903071674 |
10 | GOST 53480-2009. (2011). Diagnostika produktsii. Obshchiye trebovaniya [Diagnostics of Products. General Requirements]. (In Russian). Moscow: Standarty. |
11 | Khromova, G. A., Mukhamedova, Z. G., & Yutkina, I. S. (2016). Optimizatsiya dinamicheskikh kharakteristik avariyno-vosstanovitel’nykh avtomotris [Optimization of Dynamic Characteristics of Emergency Recovery Railcars]. (In Russian). Tashkent: Fan va texnologiya. |
12 | Krutova, V. A., & Fedotov, K. A. (2022). Analiz prichin neispravnostey, voznikayushchikh v protsesse ekspluatatsii dizel’nykh motornykh telezhek [Analysis of the causes of failures occurring during the operation of diesel motor trolleys]. (In Russian). Bulletin of the Rostov State Transport University, 3(87), 72–79. ISSN 0201-727X |
13 | Kuznetsov, B., Kardas-Cinal, V., Lukashova, E., Petrenko, N., Nikonov, O., & Nikonov, D. (2022). Evaluation of the effectiveness of using an electromechanical shock absorber in a subway car. Eksploatacja i Niezawodność, 24(4). https://doi.org/10.17531/ein.2022.4.1 |
14 | Lee, Y., Pan, J., & Hathaway, R. (2005). Fatigue testing and analysis: Theory and practice. Elsevier. ISBN 978-1-85617-440-4. |
15 | Li, F.-S., Wu, P.-B., Nie, Y.-Zh., Song, Y. (2014). Fatigue evaluation of railway vehicle bogie frame by different methods. Proceedings of the 2014 International Conference on Mechanics and Civil Engineering (pp. 844–852). https://doi.org/10.2991/icmce-14.2014.150 |
16 | Markvard, G. G. (1992). Ispol’zovaniye teorii veroyatnostey i vychislitel’noy tekhniki v sisteme energosnabzheniya [Use of Probability Theory and Computing Techniques in Energy Supply Systems]. (In Russian). Moscow: Transport. |
17 | O‘zbekiston temir yo‘llari AJ. (2015). O‘zbekiston temir yo‘llari’ni rivojlantirish strategiyasi 2015–2019 yillar [Development Strategy of Uzbekistan Railways for 2015–2019]. (In Uzbek). https://www.railway.uz/ru/gazhk/strategiya_razvitiya |
18 | Operating manual for the motor trolley. ADM diesel unit: Operation guide 77.020- 00.00.000. (2003). (In Russian). Tikhoretsk: Zavod imeni V.V. Vorovskogo. |
19 | Petrov, V. N., Smirnov, A. A., & Belyaeva, Ye. S. (2018). Modelirovaniye kolebaniy gruzonosyashchikh sistem spetsial’nykh zheleznodorozhnykh vagonov [Modeling of vibrations of load-bearing systems of special-purpose railway wagons]. (In Russian). Bulletin of Transport Sciences, 5(62), 45–52. |
20 | Popp, K., & Schiehlen, W. (2013). System dynamics and long-term behaviour of railway vehicles, track and subgrade. Springer Science and Business Media. ISBN 978-3-642-07864-4. |
21 | Rakesh, Ch. (2015). Dynamic analysis of railway vehicles. Journal of Science, 5(3), 193–198. ISSN 2277-3290. |
22 | Romen, Yu. S. (2005). Wheel pair for studying the forces of interaction between the rail vehicle and the way. In Rail Vehicle Dynamics and Associated Problems (pp. 115–121). Gliwice: Silesian University of Technology. ISBN 83-7335-239-2. |
23 | Sebesan, I., & Baiasu, D. (2012). Mathematical model for the study of the lateral oscillations of the railway vehicle. Scientific Bulletin Series D: Mechanical Engineering, 74(2), 51–66. ISSN 1454- 2358. |
24 | Sidnyaev, N. I. (2018). Teoriya planirovaniya eksperimenta i analiz statisticheskikh dannykh [Theory of Experimental Design and Statistical Data Analysis]. (In Russian). (2nd ed., rev. and suppl.)]. Moscow: Yurayt. |
25 | Sidorov, P. A., Kuznetsov, I. V., & Orlova, T. N. (2021). Otsenka ostavshegosya resursa i nadezhnosti spetsial’nykh transportnykh sredstv [Assessment of the remaining resource and reliability of special-purpose transport vehicles]. (In Russian). Transport fanlari axborotnomasi – Bulletin of Transport Sciences, 5(62), 45–52 |
26 | Sosnovsky, L., & Scherbakov, S. (2011). Concepts of material damage. Bulletin of TNTU, 14– 23. ISSN 2071-7296. |
27 | Spiryagin, M., Cole, C., Sun, Y. Q., McClanachan, M., Spiryagin, V., & McSweeney, T. (2014). Design and simulation of rail vehicles. CRC Press. ISBN 978-1498733526. |
28 | Tretyakov, A. (2004). Upravleniye individual’nym resursom vagonov v ekspluatatsii [Managing Individual Resource of Wagons in Operation]. St. Petersburg: OM-Press. ISBN 5-901739- 08-6. |
29 | Tretyakov, A. (2011). Udlineniye sroka sluzhby podvizhnogo sostava [Extending the Service Life of Rolling Stock]. (In Russian). St. Petersburg: OM-Press. ISBN 978-5-902445-56-2. |
30 | Vasil’yev, V. (2001). Kratkiy kurs soprotivleniya materialov i osnovy teorii uprugosti [A Brief Course on Strength of Materials and Fundamentals of Elasticity Theory]. St. Petersburg: “Ivan Fedorov” Publ. ISBN 5-87685-045-4. |
31 | Wang, Ch., Wang, Ch., Chaotao, L., & Jiang, Y. (2018). Research on Fatigue Test Method of Car Body for High-speed trains. IOP Conference Series: Earth and Environmental Science, 189. 062002. https://doi.org/10.1088/1755-1315/189/6/062002. |
32 | Zhou, Z., Chen, Z., Spiryagin, M., Arango, E., Wolfs, P., Cole, C., & Zhai, W. (2021). Dynamic response feature of electromechanical coupled drive subsystem in a locomotive excited by wheel flat. Engineering Failure Analysis, 122, 105248. https://doi.org/10.1016/j. engfailanal.2021.105248ResearchGate |
33 | Kapur, K., & Lamberson, L. (1990). Nadezhnost’ i proektirovaniye sistem [Reliability and Design of Systems]. (In Russian). Moscow: Mir. |