63

Annotatsiya. Mazkur maqolada aloqa tarmoqlarida trafikni boshqarish masalasini hal etish uchun ko‘p mezonli optimallashtirishga asoslangan matematik model ishlab chiqilgan. Model tarmoq grafigi asosida tuzilgan bo‘lib, xizmat sifati ko‘rsatkichlari sifatida kechikish, o‘tkazuvchanlik va ishonchlilik alohida mezonlar tarzida hisobga olingan. Sun’iy intellekt yondashuvlari, jumladan kuchaytiruvchi o‘rganish va graf neyron tarmoqlari yordamida marshrutlarni moslashuvchan boshqarish imkoniyati nazarda tutilgan. Model Python muhiti asosida simulyatsiya qilinib, oddiy va nosozlik ssenariylari bo‘yicha sinovdan o‘tkazildi. Pareto-optimal yondashuv orqali murakkab tarmoq sharoitlarida qaror qabul qilishning samarali algoritmi ishlab chiqildi. Evolyutsion hisoblash usullari, xususan genetik algoritm va kuchaytiruvchi o‘rganish agentlari yordamida simulyatsiya o‘tkazilib, modelning barqarorligi va moslanuvchanligi eksperiment orqali asoslandi. Natijalar modelning barqaror ishlashi va topologiyadagi o‘zgarishlarga nisbatan yuqori moslanuvchanlikka ega ekanligini ko‘rsatdi.

  • Web Address
  • DOI
  • Date of creation in the UzSCI system 14-11-2025
  • Read count 63
  • Date of publication 13-11-2025
  • Main LanguageO'zbek
  • Pages116-121
Ўзбек

Annotatsiya. Mazkur maqolada aloqa tarmoqlarida trafikni boshqarish masalasini hal etish uchun ko‘p mezonli optimallashtirishga asoslangan matematik model ishlab chiqilgan. Model tarmoq grafigi asosida tuzilgan bo‘lib, xizmat sifati ko‘rsatkichlari sifatida kechikish, o‘tkazuvchanlik va ishonchlilik alohida mezonlar tarzida hisobga olingan. Sun’iy intellekt yondashuvlari, jumladan kuchaytiruvchi o‘rganish va graf neyron tarmoqlari yordamida marshrutlarni moslashuvchan boshqarish imkoniyati nazarda tutilgan. Model Python muhiti asosida simulyatsiya qilinib, oddiy va nosozlik ssenariylari bo‘yicha sinovdan o‘tkazildi. Pareto-optimal yondashuv orqali murakkab tarmoq sharoitlarida qaror qabul qilishning samarali algoritmi ishlab chiqildi. Evolyutsion hisoblash usullari, xususan genetik algoritm va kuchaytiruvchi o‘rganish agentlari yordamida simulyatsiya o‘tkazilib, modelning barqarorligi va moslanuvchanligi eksperiment orqali asoslandi. Natijalar modelning barqaror ishlashi va topologiyadagi o‘zgarishlarga nisbatan yuqori moslanuvchanlikka ega ekanligini ko‘rsatdi.

Name of reference
1 Kleinrock L. Queueing Systems. Volume 2: Computer Applications. Wiley, 1976.
2 Li X., Floudas C. A. Multiobjective optimization problems with equilibrium constraints // Journal of Optimization Theory and Applications. – 2006.
3 Ahuja R. K., Magnanti T. L., Orlin J. B. Network flows: theory, algorithms, and applications. Prentice Hall, 1993.
4 Marler R. T., Arora J. S. Survey of multi-objective optimization methods for engineering // Structural and Multidisciplinary Optimization. – 2004.
5 Deb K. Multi-objective optimization using evolutionary algorithms. John Wiley & Sons, 2001
6 Sutton R. S., Barto A. G. Reinforcement Learning: An Introduction. MIT Press, 2018.
7 Bäck T. Evolutionary algorithms in theory and practice. Oxford University Press, 1996
8 Alsabaan M., Naik K., Goel N., Nayak A. Real-time traffic routing using intelligent transportation systems // IEEE Transactions on Intelligent Transportation Systems, 2013.
9 Zhou J. et al. Graph neural networks: A review of methods and applications // AI Open. – 2020
10 Attar R. et al. Multipath routing for QoS-aware traffic engineering in MPLS networks // Scientific Research Publishing, 2017.
11 Wu Z. et al. A comprehensive survey on graph neural networks // IEEE Transactions on Neural Networks and Learning Systems, 2020
12 Liu Y. et al. Multi-objective genetic algorithm for routing optimization // PLOS ONE, 2019.
13 Mirzaeva M. Study of Neural Networks in Telecommunication Systems // Conference Proceedings, 2021.
Waiting