Mazkur maqola ikkinchi Toda zanjirini oʻrganishga bagʻishlangan.Ushbu maqolaning asosiy maqsadi chekli ayirmali Shturm-Liuvill operatori uchun qoʻyilgan sochilish nazariyasining teskari masalasi uslulidan foydalanib, ikkinchi Toda zanjirining yechimi uchun tasvir olishdan iborat.Ikkinchi Toda zanjiri yechimini topishning effektiv usuli keltiriladi.Olin-gan natijalar elektr uzatish liniyalarining maxsus turlarini modellashtirishda qoʻllanilishi mum-kin.
Mazkur maqola ikkinchi Toda zanjirini oʻrganishga bagʻishlangan.Ushbu maqolaning asosiy maqsadi chekli ayirmali Shturm-Liuvill operatori uchun qoʻyilgan sochilish nazariyasining teskari masalasi uslulidan foydalanib, ikkinchi Toda zanjirining yechimi uchun tasvir olishdan iborat.Ikkinchi Toda zanjiri yechimini topishning effektiv usuli keltiriladi.Olin-gan natijalar elektr uzatish liniyalarining maxsus turlarini modellashtirishda qoʻllanilishi mum-kin.
Статья посвящена изучению второй цепочки Тоды. Основной целью статьи является получение представления для решения второй цепочки Тоды, используя метод обратной задачи теории рассеяния для разностного оператора Штурма-Лиу-вилля. Предлагается эффективный метод нахождения решения второй цепочки Тоды. Полученные результаты могут быть применены при моделировании специальных типов линий электропередач.
In this paper, we explore the second Toda lattice. The purpose of this paper is to derive representations for the solutions of the second Toda lattice in the framework of the inverse scattering method for the discrete Sturm-Liuville operator. An effective method of inte-gration of the second Toda lattice is presented. The results can be used in modeling special types of electric transmission lines.
№ | Author name | position | Name of organisation |
---|---|---|---|
1 | Babajanov B.. | УрДУ | |
2 | Hasanov .. | УрДУ | |
3 | Atajanova R.. | УрДУ |
№ | Name of reference |
---|---|
1 | Case K., Kac M.A discrete version of the inverse scattering problem.J.Math.Phys. 14,594–603 (1973). |
2 | Shchesnovich V S and Doktorov E V 1996 Modified Manakov system with self-consistent source Phys. Lett.A 213 23–31. |
3 | Melnikov V. K. Integration method of the Korteweg-de Vries equation with a self-consistent source Phys.Lett.A 133 493–6, 1988 |
4 | Mel’nikov V. K. Integration of the nonlinear Schrodinger equation with a self-consistent source. Commun.Math. Phys. 137 359–81, 1991. |
5 | Manakov S. V. Complete integrability and stochastization of discrete dynamical systems, Zh. Eksper.Teoret.Fiz. 67 (1974), 543–555. |
6 | Cabada A., Urazboev G.U. Integration of the Toda lattice with an integral-type source, Inverse Problems 26 (2010), 085004 (12pp). Cabada A., Urazboev G.U. Integration of the Toda lattice with an integral-type source, Inverse Problems 26 (2010), 085004 (12pp). |