In this paper described some quadratic operators which map the
1 n
–
dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the
first class contains all
n n n
- cubic matrices with nonpositive entries which in each
n n
dimensional
k
th matrix contains exactly one non-zero row and exactly one non-zero column; the
second class contains all
n n n
- cubic matrices with non-positive entries which has at least one
quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent
measures. For both classes of quadratic maps we find fixed points and their characters. And also, we
find trajectories of quadratic maps which map
2 I
to itself. In this paper described some quadratic operators which map the
1 n
–
dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the
first class contains all
n n n
- cubic matrices with nonpositive entries which in each
n n
dimensional
k
th matrix contains exactly one non-zero row and exactly one non-zero column; the
second class contains all
n n n
- cubic matrices with non-positive entries which has at least one
quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent
measures. For both classes of quadratic maps we find fixed points and their characters. And also, we
find trajectories of quadratic maps which map
2 I
to itself.
In this paper described some quadratic operators which map the
1 n
–
dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the
first class contains all
n n n
- cubic matrices with nonpositive entries which in each
n n
dimensional
k
th matrix contains exactly one non-zero row and exactly one non-zero column; the
second class contains all
n n n
- cubic matrices with non-positive entries which has at least one
quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent
measures. For both classes of quadratic maps we find fixed points and their characters. And also, we
find trajectories of quadratic maps which map
2 I
to itself. In this paper described some quadratic operators which map the
1 n
–
dimensional simplex of idempotent measures to itself. Such operators are divided to two classes: the
first class contains all
n n n
- cubic matrices with nonpositive entries which in each
n n
dimensional
k
th matrix contains exactly one non-zero row and exactly one non-zero column; the
second class contains all
n n n
- cubic matrices with non-positive entries which has at least one
quadratic zero-matrix. These matrices play a role of the stochastic matrices in the case of idempotent
measures. For both classes of quadratic maps we find fixed points and their characters. And also, we
find trajectories of quadratic maps which map
2 I
to itself.
В статье изучено квадратичные операторы которые отображает
1 n
–мерное симплекс идемпотентных мер на себе. Такие операторы разделяется на два
класса: первый класс содержит все
n n n
- кубические матрицы с неотрицательными
элементами которые в каждой из
n n
мерное
k
матрица содержит ровно один не
равным нулю строка и ровно один не равным нулю столбца; второй класс содержит все
n n n
- кубические матрицы с неотрицательными элементами которые имеют по
крайней мере один квадратная нулевая матрица. Эти матрицы играют роль
стохастических матриц в случае идемпотентных мер. Для обоих классов квадратичных
операторов мы находили неподвижные точки и их характеристика. И также, мы
находили траекториям квадратичных операторов которые отображает
2 I
на себе.
Ushbu maqolada
1 n
–o’lchovli idempotent ehtimolliklar simpleksini
o’zini o’ziga akslantiruvchi kvadratik operatorlar o’rganilgan. Bunday operatorlar ikki sinfga
bo’linadi: birinchi sinf nomusbat qiymatlarni qabul qiluvchi va har bir
n n
o’lchovli
k
matritsaaynan bitta nol bo’lmagan ustun va aynan bitta nol bo’lmagan satrdan iborat barcha kubik
matritsalar; ikkinchi sinf esa, kamida bitta
n n
o’lchovli matritsasi nol matritsa bo’lgan,
nomusbat elementli
n n n
- o’lchovli barcha kubik matritsalardir. Ushbu matritsalar idempotent
ehtimolliklar o’lchovi uchun stоxastik matritsa rolini o’ynaydi. Mazkur ishda har ikkala sinf uchun
ham qo’zg’almas nuqtalar va ularning xarakterlari topilgan. Shuningdek,
2 I
ni o’zini o’ziga
akslantiruvchi kvadratik operatorlarning traektoriyalari ham topilgan.
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Jorayev I.T. |
№ | Havola nomi |
---|---|
1 | Shiryaev, A.N. (1996), Probability, 2 nd Ed. Springer. |
2 | Ganikhodzhayev, R.N., Mukhamedov, F.M., and Rozikov, U.A. (2011), Quadratic stochastic operators and processes: Results and Open Problems, Infin. Dim. Anal., Quantum Probab. Related Topics. 14(2), 279-285. |
3 | Akian,M. (1999), Densities of idempotent measures and large deviations, Trans. Amer. Math. Soc., 351(4), 4515-4543. |
4 | Casas, J.M., Ladra, M., and Rozikov, U.A. (2011), A chain of evolution algebras, Linear Algebra. Appl., 435(4), 852-870. |
5 | Del Moral, P. and Doisy, M. (1999), Maslov idempotent probability calculus, II. Theory Probab. Appl., 44, 319-332. |
6 | Litvinov, G.L. and Maslov, V.P. (2003), Idempotent Mathematics and Mathematical Physics, Vienna. |
7 | Zarichnyi, M.M. (2010), Spaces and maps of idempotent measures, Izvestiya: Mathematics. 74(3), 481-499. |
8 | Rozikov, U.A. and Karimov, M.M. (2013), Dinamics of linear maps of idempotent measures, Lobachevskii Journal of Mathematics, 34(1), 20-28. |
9 | Juraev, I.T. and Karimov, M.M. (2019), Quadratic Operators Defined on a Finite- dimensional Simplex of Idempotent Measures, Journal of Discontinuity, Nonlinearity and Complexity, 8(3), 279-286 |