319

An overview of current developments in biochar application in water and wastewater treatment is given in this article, along with a brief explanation of the sorption mechanisms for removing contaminants and the techniques for biochar preparation. In order to encourage the continued use of biochar in effective water and wastewater treatment, future research directions and environmental concerns about biochar are also presented.

  • Internet havola
  • DOI
  • UzSCI tizimida yaratilgan sana 04-11-2022
  • O'qishlar soni 319
  • Nashr sanasi 30-09-2022
  • Asosiy tilIngliz
  • Sahifalar19-31
English

An overview of current developments in biochar application in water and wastewater treatment is given in this article, along with a brief explanation of the sorption mechanisms for removing contaminants and the techniques for biochar preparation. In order to encourage the continued use of biochar in effective water and wastewater treatment, future research directions and environmental concerns about biochar are also presented.

Havola nomi
1 M.N. Rashed. Adsorption technique for the removal of organic pollutants from water and wastewater. “Organic pollutants-monitoring, risk and treatment”, 2013. 167
2 M. Bello., A. Raman. “Adsorption and oxidation techniques to remove organic pollutants from water”, 2018
3 C. Grégorio., E. Lichtfouse., L. Wilson., N. Morin-Crini. Adsorption-oriented processes using conventional and non-conventional adsorbents for wastewater treatment. Green Adsorbents for Pollutant Removal, 18, Springer Nature, “Environmental chemistry for a sustainable world”, 2018. 23
4 I.T. Ivancev., L. Landwehrkamp., R. Hobby., M. Vernillo., S. Panglisch. Adsorption of organic pollutants from the aqueous phase using graphite as a model adsorbent. “Adsorption science technology”, 2020. 286.
5 M. Rashed. "Adsorption Technique for the Removal of Organic Pollutants from Water and Wastewater". “Organic pollutants - monitoring, risk and treatment, edited by M. Rashed, intechopen”, 2013
6 N.H. Solangi., J. Kumar., S.A. Mazari., S. Ahmed., N. Fatima., N.M. Mubarak. Development of fruit waste derived bio-adsorbents for wastewater treatment: “A review. Journal of Hazardous Materials”, 2021. 125848.
7 P. Pathak., S. Mandavgane., B. Kulkarni. “Fruit peel waste as a novel low-cost bio adsorbent. Reviews in Chemical Engineering”, 2015. 361.
8 N. Talib., S.Ch. Chuo., S. Mohd-Setapar., P. Umi., Y.K. Khairul. Trends in Adsorption Mechanisms of Fruit Peel Adsorbents to Remove Wastewater Pollutants (Cu (II), Cd (II) and Pb (II)). “Journal of water and environment technology”, 2020. 290.
9 G. Campos-Flores., A. Castillo-Herrera., J. Gurreonero-Fernández., A. Obeso-Obando., V. Díaz-Silva., R. Vejarano. “Adsorbent material based on passion-fruit wastes to remove lead (Pb), chromium (Cr) and copper (Cu) from metal-contaminated waters”, 2018.
10 S.W. Sousa., A.G. Oliveira., J.P. Ribeiro., M.F. Rosa., D. Keukeleire., R.F. Nascimento. (2010). Green coconut shells applied as adsorbent for removal of toxic metal ions using fixed-bed column technology. “Journal of environmental management”, 2010. 1634.
11 L. Chandana., K. Killi., S. Duvvuri., S. Challapalli. Low-cost adsorbent derived from the coconut shell for the removal of hexavalent chromium from aqueous medium. “Materials today: proceedings”, 2019.
12 L. Li., S. Liu., T. Zhu. Application of activated carbon derived from scrap tires for adsorption of Rhodamine B. “Journal of environmental sciences”, 2010. 1273.
13 O. Oribayo., O. Oluwafunke., A. Akinyanju., K. Omoloja., S. Williams. “Coconut shell-based activated carbon as adsorbent for the removal of dye from aqueous solution: equilibrium, kinetics, and thermodynamic studies”, 2020.
14 I. Romer. "Coconut Shell Charcoal Adsorption to Remove Methyl Orange in Aqueous Solutions". “Sorption from fundamentals to applications [working title], edited by George Kyzas, IntechOpen”, 2022.
15 M.T. Islam., R. Saenz-Arana., C. Hernandez., T. Guinto., M.A. Ahsan., D.T. Bragg., J.C. Noveron. Conversion of waste tire rubber into a high-capacity adsorbent for the removal of methylene blue, methyl orange, and tetracycline from water. “Journal of environmental chemical engineering”, 2018. 3070
16 K.M. Dimpe., J.N. Catherine., N.N. Philiswa., W. Xiaoliang. Application of waste tyre-based activated carbon for the removal of heavy metals in wastewater. “Cogent engineering”, 2017
17 J.O. Ighalo., A.G. Adeniyi. (2020). Adsorption of pollutants by plant bark derived adsorbents: “An empirical review. journal of water process engineering”, 2020. 101228
18 N. Ratola., C. Botelho., A. Alves. (2003). The use of pine bark as a natural adsorbent for persistent organic pollutants - Study of lindane and heptachlor adsorption. “Journal of chemical technology and biotechnology”, 2003. 347.
19 H.M. Edmo., L. Cavalcante., C.M. Candido., P.O. Helinando., K.B. Silveira., T.V.S. Álvares., C.L. Eder., M. Thyrel., H.L. Sylvia., S.R. Glaydson. 3-Aminopropyl-triethoxysilaneFunctionalized Tannin-Rich Grape Biomass for the Adsorption of Methyl Orange Dye: Synthesis, Characterization, and the Adsorption Mechanism. “ACS Omega”, 2022. 18997.
20 M. Sciban., M. Klasnja. Wood sawdust and wood originate materials as adsorbents for heavy metal ions. “Holz als Roh- und Werkstoff”, 2004. 69.
21 S. Larous., A.H. Meniai. “Energy procedia”, 2012. 905.
22 A. Chugunov., E. Filatova. Adsorption of petroleum products by modified and activated adsorbents. Proceedings of Universities. “Applied chemistry and biotechnology”,2021. 318
23 S.K. Srivastava., N. Pant., N. Pal. (1987). Studies on the efficiency of a local fertilizer waste as a low cost adsorbent. “Water research”, 1987. 1389.
24 S. Tewari. “Studies on use of carbon slurry, a waste from fertilizer plants, in wastewater treatment”, 2002
25 S.K. Saakshy., A.B. Gupta., A.K. Sharma. Fly ash as low cost adsorbent for treatment of effluent of handmade paper Industry-Kinetic and modelling studies for direct black dye. “Journal of cleaner production”, 2016. 1227.
26 U.O. Aigbe., K.E. Ukhurebor., R.B. Onyancha., O.A. Osibote., H. Darmokoesoemo., H.S. Kusuma. Fly ash-based adsorbent for adsorption of heavy metals and dyes from aqueous solution: a review. “Journal of materials research and technology”, 2021. 2751.
27 X. Chen., H. Song., Y. Guo. “Converting waste coal fly ash into effective adsorbent for the removal of ammonia nitrogen in water”, 2018. 12731.
28 I. Anastopoulos., A. Bhatnagar., B.H. Hameed., Y.S. Ok., M. Omirou. A review on wastederived adsorbents from sugar industry for pollutant removal in water and wastewater. “Journal of molecular liquids”, 2017. 179.
29 V.K. Gupta., I. Ali. Utilisation of bagasse fly ash (a sugar industry waste) for the removal of copper and zinc from wastewater. “Separation and purification technology”, 2000. 131.
30 W. Tobhlong., P. Sompongchaiyakul., S. Dharmvanij. (1994). Use of chitosan to treat the waste water from seafood processing plant. “Thai journal of aquatic science (Thailand)”, 1994. 120
31 H. Znad., M.R. Awual., S. Martini. The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. “Molecules”, 2022. 1275
32 H. Znad., M.R. Awual., S. Martini. The utilization of algae and seaweed biomass for bioremediation of heavy metal-contaminated wastewater. “Molecules”. 2022.
33 C.J. Williams., R.G.J. Edyvean. Optimization of metal adsorption by seaweeds and seaweed derivatives. “Process safety and environmental protection”, 1997. 19.
34 R. Li., T. Zhang., H. Zhong., W. Song., Y. Zhou., X. Yin. Bioadsorbents from algae residues for heavy metal ions adsorption: chemical modification, adsorption behaviour and mechanism. “Environmental technology”, 2020.
35 L. Ringqvist. “Water Research”, 2002. 2394.
36 D. Quyen., L. Loc., H. Ha., D. Nga., N. Tri., N. Van. Synthesis of adsorbent with zeolite structure from red mud and rice husk ash and its properties. “AIP Conference Proceedings”, 2017. 1878.
37 B. Sultanov. Agriculture of the Republic of Uzbekistan after the peak of the pandemic. “E3S Web of Conferences”, 2021
38 The global biochar market is expected to grow from USD 164.5 million in 2021 to USD 365.0 million by 2028 at a CAGR of 12.1% in the forecast period. Read More. https://www.fortunebusinessinsights.com/industry-reports/biochar-market-100750
39 D. Yingjie., Z. Naixin., X. Chuanming., C. Qingxia., S. Qiya. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: “A review. Chemosphere”, 2019. 12
40 P. Zhang., D. O’Connor., W. Yinan., L. Jiang., T. Xiab., L. Wanga., C.W. Daniel., T. Yong., S.O.D. Houa. A green biochar/iron oxide composite for methylene blue removal. “Journal of hazardous materials”, 2020. 121286
41 J. Hoslett., H. Ghazal., E. Katsou., H. Jouhara. The removal of tetracycline from water using biochar produced from agricultural discarded material. “Science of the total Environment”, 2020. 141755
42 H. Chakhtouna., H. Benzeid., N. Zari., A. Qaiss., R. Bouhfid. (2021). Functional CoFe2O4‐modified biochar derived from banana pseudostem as an efficient adsorbent for the removal of amoxicillin from water. “Separation and purification technology”, 2021. 118592
43 N.A. Rashidi., Y. Suzana. (2020). “A mini review of biochar synthesis, characterization, and related standardization and legislation”, 2020. 92621.
44 R.A. Paygamov., D.J. Jumaevа., Sh.A. Kuldasheva., I.D. Eshmetov. Obtaining importsubstituting adsorbents based on charcoal. “Journal chemical technology monitoring and control”, 2018. 56.
45 F. Guo., L. Bao., H. Wang., S.L. Larson., J.H. Ballard., H.M. Knotek-Smith., F. Han. “A simple method for the synthesis of biochar nanodots using hydrothermal reactor. Methods”, 2020
46 L. Zhu., H. Lei., Y. Zhang., X. Zhang., Q. Bu., Y. Wei. A Review of Biochar Derived from Pyrolysis and Its Application in Biofuel Production. “SFJ Material Chem Eng”, 2018. 1007
47 P.R. Yaashikaa., P.S. Kumar., S. Varjani., A. Saravanan. A critical review on the biochar production techniques, characterization, stability and applications for circular bioeconomy. “Biotechnology reports”, 2020.
48 L. Li., J.S. Rowbotham., H. Christopher Greenwell., P.W. Dyer. Introduction to pyrolysis and catalytic pyrolysis: versatile techniques for biomass conversion. “New and future developments in catalysis”, 2013. 173
49 H. Chen. Lignocellulose biorefinery conversion engineering. “Lignocellulose biorefinery engineering”, 2015. 87
50 A.K. Sakhiya., A. Abhijeet. “Production, activation and application of biochar in recent times”, 2020
51 S. Anto., M.P. Sudhakar., T.Sh. Ahamed., M.S. Samuel., T. Mathimani., K. Brindhadevi., A. Pugazhendhi. “Activation strategies for biochar to use as an efficient catalyst in various applications”, 2021
52 B. Sajjadi., W.Y. Chen., N.O. Egiebor. "A comprehensive review on physical activation of biochar for energy and environmental applications" “Reviews in chemical engineering”, 2019. 735
53 D. Bosch., L. Rendl., F. Plangger., A. Hofmann., G. Langergraber. Chemical Activation of biochar with H3PO4 a comparison between two reactor types. “Chemical engineering transactions”, 2021. 86.
54 V. Siipola., T. Tamminen., A. Källi., R. Lahti., H. Romar., K. Rasa., R. Keskinen., J. Hyväluoma., M. Hannula., H. Wikberg. "Effects of biomass type, carbonization process, and activation method on the properties of bio-based activated carbons”, 2018. 5976
55 M. Kołtowski., B. Charmas., J. Skubiszewska-Zięba., P. Oleszczuk. Effect of biochar activation by different methods on toxicity of soil contaminated by industrial activity. “Ecotoxicology and environmental safety”, 2017. 119.
56 O.D. Nartey., B. Zhao. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: “An overview. advances in materials science and engineering”, 2014. 1.
57 M. Marmiroli., U. Bonas., D. Imperiale., G. Lencioni., F. Mussi., N. Marmiroli., E. Maestri. “Structural and functional features of chars from different biomasses as potential plant amendments. front plant sci”, 2018
58 Z. Liu., B. Dugan., C.A. Masiello. Gonnermann HM. “Biochar particle size, shape, and porosity act together to influence soil water properties”, 2017.
59 A.G. Alghamdi., A. Alkhasha., H.M. Ibrahim. Effect of biochar particle size on water retention and availability in a sandy loam soil. “Journal of saudi chemical society”, 2020. 1042
60 Z. Qiu., Y. Wang., X. Bi., T. Zhou., J. Zhou., J. Zhao., Z. Miao., W. Yi., P. Fu., Sh. Zhuo. (2018). Biochar-based carbons with hierarchical micro-meso-macro porosity for high rate and long cycle life supercapacitors. “journal of power sources”, 2018. 82.
61 I.D. Manariotis., K.N. Fotopoulou., H.K. Karapanagioti. Preparation and characterization of biochar sorbents produced from malt spent rootlets. “Industrial engineering chemistry research”, 2015. 9577
62 O.Y. Yu., B. Raichle., S. Sink. Impact of biochar on the water holding capacity of loamy sand soil. “International journal energy environmental engineering”, 2013.
63 M. Wu., Q. Feng., X. Sun., H. Wang., G. Gielen., W.X. Wu. Rice (Oryza sativa L) plantation affects the stability of biochar in paddy soil. “Scientific reports”, 2015.
64 E. Behazin., E. Ogunsona., A. Rodriguez., A. Mohanty., M. Misra., A. Anyia. Peer-reviewed article mechanical, chemical, and physical properties of wood and perennial grass biochars for possible composite application. “Bioresources”, 2016. 1334.
65 R. Janu., V. Mrlik., D. Ribitsch., J. Hofman., P. Sedláček., L. Bielská., G. Soja. (2021). Biochar surface functional groups as affected by biomass feedstock, biochar composition and pyrolysis temperature. “Carbon resources conversion”, 2011. 36.
66 B. Singh., Y. Fang., C.T. Johnston. “A fourier-transform infrared study of biochar aging in soils”, 2016. 613
67 A. Ray., A. Banerjee., A. Dubey. Characterization of biochars from various agricultural byproducts using ftir spectroscopy, sem focused with image processing. “IJAEB”, 2020. 423.
68 X. Ma., B. Zhou., A. Budai., A. Jeng., X. Hao., D. Wei., Y. Zhang., D. Rasse. Study of Biochar Properties by Scanning Electron Microscope – Energy Dispersive X-Ray Spectroscopy (SEM-EDX). “Communications in soil science and plant analysis”, 2016.
69 S. Suman., D. Panwar., D. Gautam. Surface morphology properties of biochars obtained from different biomass waste. “Energy sources, part a: recovery, utilization, and environmental effects”, 2017. 1283553.
70 E. Viglašová., M. Galamboš., D. Diviš., Z. Danková., M. Dano., L. Krivosudský., Ch. Lengauer., M. Matik., J. Briančin., G. Soja. Engineered biochar as a tool for nitrogen pollutants removal: preparation, characterization and sorption study. “Desalination and water treatment”, 2020. 318
71 M. Marmiroli., U. Bonas., D. Imperiale., G. Lencioni., F. Mussi., N. Marmiroli., E. Maestri. Structural and functional features of chars from different biomasses as potential plant amendments. “Frontiers in plant science”, 2018. 01119
72 Y.H. Park., J. Kim., S.S. Kim., Y.K. Park. Pyrolysis characteristics and kinetics of oak trees using thermogravimetric analyser and micro-tubing reactor. “Bioresource technology”, 2008
73 E. Sørmo., L. Silvani., G. Thune., H. Gerber., H.P. Schmidt., A.B. Smebye., G. Cornelissen. Waste timber pyrolysis in a medium-scale unit: Emission budgets and biochar quality. “Science of the total environment”, 2020. 1373
74 K. Jindo., H. Mizumoto., Y. Sawada., M. Sanchez-Monedero., T. Sonoki., “Physical and chemical characterization of biochars derived from different agricultural residues,” “Biogeosciences”, 2014. 6613.
75 A. Fahmi., W. Samsuri., H. Jol., S.K. Daljit. (2018). Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption. “RSC Advances”, 2018. 38270.
76 P. Kazimierski., P. Hercel., T. Suchocki., J. Smoliński., A. Pladzyk., D. Kardaś., J. Łuczak., K. Januszewicz. Pyrolysis of pruning residues from various types of orchards and pretreatment for energetic use of biochar. “Materials (basel)”, 2021.
77 N.S. Kumar., H.M. Shaikh., M. Asif., E.H. Al-Ghurabi. Engineered biochar from wood apple shell waste for high-efficient removal of toxic phenolic compounds in wastewater. “Scientific reports”, 2021. 2586.
78 Z. Chowdhury., M.D. Karim., M. Ashraf., Kh. Khalisanni. Influence of carbonization temperature on physicochemical properties of biochar derived from slow pyrolysis of durian wood (durio zibethinus) sawdust. “Bioresources”, 2016. 3356.
79 M. Ahmad., A.U. Rajapaksha., J.E. Lim., M. Zhang., N. Bolan., D. Mohan., M. Withanage., S.S. Lee., Y.S. Ok. Biochar as a sorbent for contaminant management in soil and water: a review. “Chemosphere”, 2014. 19.
80 F. Tomul., Y. Arslan., B. Kabak., D. Trak., E. Kendüzler., E. Lima., H. Tran, Hai. Peanut shellsderived biochars prepared from different carbonization processes: Comparison of characterization and mechanism of naproxen adsorption in water (50 days' free access). “Science of the total environment”, 2020. 137828.
81 A. Tomczyk., Z. Sokołowska., P. Boguta. Biochar physicochemical properties: pyrolysis temperature and feedstock kind effects. “Rev Environ Sci Biotechnol”, 2020. 191
82 M.M. Rossi., L. Silvani., N. Amanat., P.M. Petrangeli. Biochar from pine wood, rice husks and iron-eupatorium shrubs for remediation applications: “Surface characterization and experimental tests for trichloroethylene removal materials (Basel)”, 2021. 1776.
83 A.H. Fahmi., A.W. Samsuri., H. Jol., D. Singh. Physical modification of biochar to expose the inner pores and their functional groups to enhance lead adsorption. “RSC Advances”, 2018. 38270.
84 R.I. Soria., S.A. Rolfe., M.P. Betancourth., S.F. Thornton. The relationship between properties of plant-based biochars and sorption of Cd(II), Pb(II) and Zn(II) in soil model systems. “Heliyon”, 2020. 5388
85 X. Liu., G. Li., C. Chen. “Banana stem and leaf biochar as an effective adsorbent for cadmium and lead in aqueous solution”, 2022
86 M. Suleman., Z. Muhammad., A. Ahmed., M. Rashid., S. Hussain., A. Razzaq., N.A. Mohidem., T. Fazal., B. Haider., Y.K. Park. Castor leaves-based biochar for adsorption of safranin from textile wastewater. “Sustainability”, 2021.
87 J. Zhang., J. Zhang., M. Wang., Sh. Wu., H. Wang., N. Niazi., Y. Man., P. Christie., Sh. Shan., M. Wong. Effect of tobacco stem-derived biochar on soil metal immobilization and the cultivation of tobacco plant. “Journal of soils and sediments”, 2019.
88 A.A. Lawal., M.A. Hassan., M.A. Farid., T.A. Yasim-Anuar., M.Z. Yusoff., M.R. Zakaria., Y. Shirai. Production of biochar from oil palm frond by steam pyrolysis for removal of residual contaminants in palm oil mill effluent final discharge. “Journal of cleaner production”, 2020. 121643
89 A. Navya. Preparation and characterization of cassava stem biochar for mixed reactive dyes removal from simulated effluent. “Desalination and water treatment”, 2020. 440.
90 Y.Y. Wang., H.H. Lu., Y.X. Liu., S.M. Yang. Ammonium citrate-modified biochar: An adsorbent for La(III) ions from aqueous solution. Colloids and surfaces. “Physicochemical and engineering aspects”, 2016. 550.
91 J.S. Cha., S.H. Park., S.C. Jung., C. Ryu., J.K. Jeon., M.C. Shin., Y.K. Park. Production and utilization of biochar: A review. “Journal of industrial and engineering chemistry”, 2016. 1
92 P. Siipola., R. Lugmacher., K. Wendling. Low-cost biochar adsorbents for water purification including microplastics removal. “Applied sciences”, 2020. 788.
93 Y. Sun., T. Wang., X. Sun., L. Bai., C. Han., P. Zhang. The potential of biochar and ligninbased adsorbents for wastewater treatment: Comparison, mechanism, and application— A review. “Industrial crops and products”, 2021. 113473.
94 P. Srivatsav., B.S. Bhargav., V. Shanmugasundaram., J. Arun., K.P. Gopinath., A. Bhatnagar. Biochar as an eco-friendly and economical adsorbent for the removal of colorants (dyes) from aqueous environment: “Review. water”, 2020. 3561.
95 D. Mohan., A. Sarswat., Y.S. Ok., C.U. Pittman. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent – A critical review. “Bioresource technology”, 2014. 191.
96 F.A. Sanromán., M. Pazos., E. Rosales., M.A. Sanromán. Unravelling the environmental application of biochar as low-cost biosorbent: a review. “Applied sciences”, 2020.
97 W. Xiang., X. Zhang., J. Chen., W. Zou., F. He., X. Hu., B. Gao. Biochar technology in wastewater treatment: A critical review. “Chemosphere”, 2020. 126539.
98 G. Enaime., A. Baçaoui., A. Yaacoubi., M. Lübken. Biochar for wastewater treatment— conversion technologies and applications. “Applied sciences”, 2020. 3492
99 Y. Deng., T. Zhang., Q. Wang. Biochar adsorption treatment for typical pollutants removal in livestock wastewater: a review. “Engineering applications of biochar, edited by WuJang Huang”, 2017. 68253.
100 T.G. Ambaye., M. Vaccari., E.D. van Hullebusch. Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. “Int. J. Environ. Sci. Technol”, 2021. 3273.
101 P. Krasucka., B. Pan., S.Y. Ok., D. Mohan., B. Sarkar., P. Oleszczuk. Engineered biochar a sustainable solution for the removal of antibiotics from water. “Chemical engineering journal”, 2020. 126926
102 J. Hoslett., H. Ghazal., E. Katsou., H. Jouhara. The removal of tetracycline from water using biochar produced from agricultural discarded material. “Science of the total environment”, 2020. 1417
103 Q. Wu., Y. Xian., Z. He., Q. Zhang., J. Wu., G. Yang., X. Zhang., H. Qi., J. Ma., Y. Xiao., L. Long. “Adsorption characteristics of Pb(II) using biochar derived from spent mushroom substrate”, 2019.
104 H. Wang., W. Xia., P. Lu. Study on adsorption characteristics of biochar on heavy metals in soil. “Korean journal of chemical engineering”, 2017
105 J. Liu., H. Wang., N. Ma., B. Zhou., H. Chen., R. Yuan. Optimization of the raw materials of biochars for the adsorption of heavy metal ions from aqueous solution. “Water Sci Technol”, 2022. 2869
106 M. Kılıç., C. Kırbıyık., O. Çepelioğullar., A.E. Pütün. Adsorption of heavy metal ions from aqueous solutions by bio-char, a by-product of pyrolysis. “Applied surface science”, 2013. 856
107 L. Liang., F. Xi., W. Tan. Review of organic and inorganic pollutants removal by biochar and biochar-based composites. “Biochar”, 2021. 255.
108 . N.A. Qambrani., M.M. Rahman., S. Won., S. Shim., Ch. Ra. "Biochar properties and ecofriendly applications for climate change mitigation, waste management, and wastewater treatment: a review," Renewable and sustainable energy reviews, “Elsevier”, 2017. 255
109 A.B. Duwiejuah., A.H. Abubakari., A.K. Quainoo., Y. Amadu. Review of biochar properties and remediation of metal pollution of water and soil. “Health pollut”, 2020
110 . B. Li., D. Liu., D. Lin., X. Xie., S. Wang., H. Xu., X. Hu. Changes in biochar functional groups and its reactivity after volatile–char interactions during biomass pyrolysis. “Energy fuels”, 2020. 14291.
111 B. Armynah., D.Z. Atika., W.H. Piarah., D. Tahir. Analysis of chemical and physical properties of biochar from rice husk biomass. “Journal of physics: conference series”, 2018
112 M. Uchimiya., D. Bannon., L. Wartelle. Retention of heavy metals by carboxyl functional groups of biochars in small arms range soil. “Journal of agricultural and food chemistry”, 2012. 1798
113 M.S. Islam., J.H. Kwak., C. Nzediegwu., S. Wang., K. Palansuriya., E.E. Kwon., S.X. Chang. Biochar heavy metal removal in aqueous solution depends on feedstock type and pyrolysis purging gas. “Environmental pollution”, 2021. 281.
Kutilmoqda