113

Смешение полимеров является одним из эффективных методов [1] усиления упругопрочностных характеристик полимерных материалов. Однако ввиду отсутствия совместимости полимерных пар на молекулярном уровне традиционное смешение приводит к развитию грубодисперсной морфологии смеси и слабой межфазной адгезии. Данная проблема была успешно решена путем контролируемого развития морфологии и уменьшения межфазного натяжения между компонентами смеси полимеров [2, 3]. При этом наличие структурных превращений (деградационные процессы, внутримолекулярное сшивание, формирование взаимопрония.

  • O'qishlar soni16
  • Nashr sanasi11-11-2022
  • Asosiy tilRus
  • Sahifalar34-46
Русский

Смешение полимеров является одним из эффективных методов [1] усиления упругопрочностных характеристик полимерных материалов. Однако ввиду отсутствия совместимости полимерных пар на молекулярном уровне традиционное смешение приводит к развитию грубодисперсной морфологии смеси и слабой межфазной адгезии. Данная проблема была успешно решена путем контролируемого развития морфологии и уменьшения межфазного натяжения между компонентами смеси полимеров [2, 3]. При этом наличие структурных превращений (деградационные процессы, внутримолекулярное сшивание, формирование взаимопрония.

Ўзбек

Ушбу ишда икки турдаги компатибилизатор иштирокида олинган поливинилхлорид (ПВХ) ва полиэтилен (ПЭ) полимер аралашмаларининг деформацияланиш хусусиятлари ўрганилди; аралашмаларнинг эластик-мустаҳкамлик хусусиятлари ва эритмадаги компонентлар аралашмаси интенсивлиги ўзгаришларининг қиёсий баҳоси амалга оширилди. ПВХнинг пластификатор билан пластификацияланиш самарадорлигига аралаштириш тезлигининг ортиб бориши орқали эришилиши аниқланди. Бу эластик модули ва оқувчанлик чегарасидаги кучланишнинг камайиши орқали тушунтирилди. Компатибилизаторсиз ПВХ матрицали полимер аралашмалар учун ПЭ миқдорининг кўпайиши оқувчанлик чегарасидаги кучланиш ва узилишдаги нисбий узайишнинг камайишига олиб келди. Интенсив аралаштиришда аралашманинг тенг миқдорлари учун деформация эгри чизиқлари оқувчанлик зонаси ва ориентация тартибланиши кузатилди. 

English

This piece of work has investigated features of deformation of polyvinyl chloride (PVC) and polyethylene (PE) polymer blends, resulted in the presence of two types of compatibilizers, and made a comparative assessment of the elastic strength characteristics of the blends versus their variations produced in the intensity of mixing components in the melt. The effect of plasticization of PVC with dioctyl phthalate was found at increased speed of stirring, expressed by a decrease in the modulus of elasticity and stress at the yield point. For mixtures with a PVC matrix in the absence of a compatibilizer, an increase in the PE content leads to a drop in stress at the yield point and elongation at break; for equal mixture compositions with intense mixing, the deformation curves show a combination of the yield zone and orientational ordering.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Berdinazarov Q.N. tayanch doktorant O‘zR FA Polimerlar kimyosi va fizikasi instituti
2 Haqberdiyev E.O. fizika-matematika fanlari bo‘yicha falsafa doktori (PhD), kichik ilmiy xodim O‘zR FA Polimerlar kimyosi va fizikasi instituti
3 Normurodov N.F. tayanch doktorant O‘zR FA Polimerlar kimyosi va fizikasi instituti
4 Ashurov N.R. texnika fanlari doktori, professor, laboratoriya mudiri O‘zR FA Polimerlar kimyosi va fizikasi instituti
5 Abriyev S.A. fizika fakulteti magistranti Mirzo Ulug‘bek nomidagi O‘zbekiston Milliy universiteti
Havola nomi
1 Bucknall C. B., Paul D. R. Notched impact behaviour of polymer blends: Part 2: Dependence of critical particle size on rubber particle volume fraction. Polymer, 2013, vol. 54, no. 1, pp. 320–329.
2 Taylor G.I. The formation of emulsions in definable fields of flow. Proc. R. Soc, 1934, vol. 146, pp. 501–523. DOI: 10.1098/rspa.1934.0169/.
3 Wu S. Formation of dispersed phase in incompatible polymer blends: Interfacial and rheological effects. Polym. Eng. Sci., 1987, vol. 27, pp. 335–343. DOI: 10.1002/tdm_license_1/.
4 Minsker K.S. Structural and physical stabilisation of polyvinyl chloride in solution. International Polymer Science and Technology, 2002, vol. 29, pp. 38–40.
5 Starnes W.H. Structural and mechanistic aspects of the thermal degradation of polyvinyl chloride. Prog. Polym. Sci., 2002, vol. 27, pp. 2133–2170. DOI: 10.1016/S0079-6700(02)00063-1/.
6 Pospisil J., Horak Z., Nespurek S., Kuroda S. Degradation and aging of polymer blends. Thermomechanical and thermal degradation. Polym. Degrad. Stab., 1999, vol. 65, pp. 405–414. DOI: 10.1016/S0141-3910(99)00029-4/.
7 Sombatsompop N., Sangsanit K., Thongpin C. Structural changes of PVC in PVC/LDPE meltblends: Effects of LDPE content and number of extrusions. Polym. Eng. Sci., 2004, vol. 44, pp. 487–495, DOI: 10.1002/pen.20043/.
8 Sombatsompop N., Sangsanit K., Thongpin C. Analysis of low‐density polyethylene‐g‐poly (vinyl chloride) copolymers formed in poly (vinyl chloride)/low‐density polyethylene melt blends with gel permeation chromatography and solid‐state 13C‐NMR. Appl. Polym. Sci., 2004, vol. 92, pp. 3167–3172. DOI: 10.1002/app.20286/.
9 Xu C., Fang Z., Zhong J. Study on phase dispersion-crosslinking synergism in binary blends of poly(vinyl chlo-ride) with low density polyethylene. Polymer, 1997, vol. 38, pp. 155–158. DOI: 10.1016/S0032-3861(96)00474-0/.
10 Fang Z., Zeng M., Cai G, Xu C. Application of phase dispersion-crosslinking synergism on recycling commingled plastic wastes. Appl. Polym. Sci., 2001, vol. 82, pp. 2947–2952. DOI: 10.1002/app.2150/.
11 Ma G., Fang Z., Xu C. Phase dispersion-crosslinking synergism in binary blends of poly(vinyl chloride) with low-density polyethylene: Entrapping phenomenon in PVC/LDPE/DCP blend. Appl. Polym. Sci., 2003, vol. 88, pp. 1296–1303. DOI: 10.1002/app.11808/.
12 Fang Z., Ma G., Liu C., Xu C. Morphology evolution of immiscible LDPE/PVC blends in the presence of compatibilizer and phase dispersant. Journal of Applied Polymer Science., 2004, vol. 91, pp. 763-772, doi.org/10.1002/app.13002.
13 Prachayawarakorn J., Khamsri J., Chaochanchaikul K., Sombatsompop N. Effects of compatibilizer type and rubber wood sawdust content on the mechanical, morphological, and thermal properties of PVC/LDPE blend. Appl. Polym. Sci., 2006, vol. 102, pp. 598–606. DOI: 10.1002/ app.24324/.
14 Maou S., Meghezzi A., Nebbache N., Meftah Y. Mechanical, morphological, and thermal properties of poly (vinyl chloride)/low-density polyethylene composites filled with date palm leaf fiber. Vinyl. Addit. Technol., 2019, vol. 25, pp. 88–93. DOI: 10.1002/vnl.21687/.
15 Khakberdiev E.O., Berdinazarov Q.N., Ashurov N.R. Mechanical and morphological properties of poly(vinyl chloride) and linear low-density polyethylene polymer blends. Vinyl. Addit. Technol., 2022, vol. 28, no. 3, pp. 659–666. DOI: 10.1002/vnl.21920/.
16 Wu J., Chen T., Luo X., Han D., Wang Z., Wu J. TG/FTIR analysis on copyrolysis behavior of PE, PVC and PS. Waste Manag., 2014, vol. 34, pp. 676−682. DOI: 10.1016/j.wasman.2013.12.005/.
17 Aboulkas A., El Bouadili A. Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms. Energy Convers. Manag., 2010, vol. 51, pp. 1363−1369. DOI: 10.1016/j.enconman.2009.12.017/.
18 Xu F., Wang B., Yang D., Hao J., Qiao Y., Tian Y. Thermal degradation of typical plastics under high heating rate conditions by TG-FTIR: Pyrolysis behaviors and kinetic analysis. Energy Convers. Manag., 2018, vol. 171, pp. 1106−1115. DOI: 10.1016/j.enconman.2018.06.047/.
19 Qiao Y., Xu F., Xu S., Yang D., Wang B., Ming X., Hao J., Tian Y. Pyrolysis Characteristics and Kinetics of Typical Municipal Solid Waste Components and Their Mixture: Analytical TG-FTIR Study. Energy Fuels, 2018, vol. 32, pp. 10801−10812. DOI: 10.1021/acs.energyfuels.8b02571/.
20 Soria-Verdugo A., Goos E., Garcia-Hernando N., Riedel U. Analyzing the pyrolysis kinetics of several microalgae species by various differential and integral isoconversional kinetic methods and the distributed activation energy model. Algal Res., 2018, vol. 32, pp. 11−29. DOI: 10.1016/j. algal.2018.03.005/.
21 Fang Z., Xu C., Bao S., Zhao Y. In situ crosslinking and its synergism with compatibilization in polyvinyl chloride/polyethylene blends. Polymer, 1997, vol. 38, pp. 131–133. DOI: 10.1016/S0032- 3861(96)00488-0/.
22 Harrats C., Benabdallah T., Groeninckx G., Jerome R. Stress–strain behavior of lowdensity polyethylene/poly(methyl methacrylate) blends with modulated interfaces with a hydrogenated polybutadiene-block-poly(methyl methacrylate) diblock copolymer. Journal of Polymer Science: Part B: Polymer Physics, 2005, vol. 43, pp. 22-34. DOI: 10.1002/polb.20300/.
23 Kambour R.P. A review of crazing and fracture in thermoplastics. Polym. Sci., Part D: Macromol Rev., 1973, vol. 7, pp. 1–154. DOI: 10.1002/pol.1973.230070101/.
24 Araki T., Shibayama M., Tran-Cong Q. Structure and Properties of Multiphase Polymeric Materials. New York, CRC Press, 1998, p. 480.
25 Bucknall C.B. Toughened Plastics. London, Applied Science, 1977, p. 188.
26 Buckley D. J. PhD thesis/ Cornell University, 1993.
27 Paul D.R. High performance engineering thermoplastics via reactive compatibilization. Modification and Blending of Synthetic and Natural Macromolecules, Springer, Dordrecht, 2004, pp. 293–315.
28 Groeninck G., Dompas D. Morphological aspects, structure and properties of multiphase polymeric materials. 1998. p. 423.
29 Thongpin C., Santavitee O., Sombatsompop N. Degradation mechanism and mechanical properties of PVC in PVC-PE melt blends: Effects of molecular architecture, content, and MFI of PE. Vinyl. Addit. Technol., 2006, vol. 12, pp. 115–123. DOI: 10.1002/vnl.20079/.
Kutilmoqda