136

The article proposes an automated intellectual control system for the
technological process of storing oilseeds based on fuzz−control. To solve the problem of
systematic change of process parameters, a modified Saati method used to construct belonging
functions, and belonging functions for controlled technological parameters of the microclimate,
disturbances and control actions of the control system are determined. To optimize the
description, the obtained belonging functions approximated in the symbolic mathematics
Maplesoft.
 

  • Internet havola
  • DOI
  • UzSCI tizimida yaratilgan sana 25-04-2023
  • O'qishlar soni 136
  • Nashr sanasi 20-04-2023
  • Asosiy tilIngliz
  • Sahifalar175-180
English

The article proposes an automated intellectual control system for the
technological process of storing oilseeds based on fuzz−control. To solve the problem of
systematic change of process parameters, a modified Saati method used to construct belonging
functions, and belonging functions for controlled technological parameters of the microclimate,
disturbances and control actions of the control system are determined. To optimize the
description, the obtained belonging functions approximated in the symbolic mathematics
Maplesoft.
 

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Kabulov N.A. researcher TSTU
2 Yusupbekov N.R. academic TSTU
Havola nomi
1 N.R. Yusupbekov., Sh.M. Gulyamov., A.N. Yusupbekov., N.A. Kabulov. “Simulation of Chemical-Technological Complexes. “Advances in intelligent systems and computing. Springer nature, Prague, Czech”, 2019. 588.
2 N.A. Kabulov. Construction of intellectual industrial storages of perishable vegetable raw materials. International scientific and technical journal. “Chemical technology control and management”, 2019. 30.
3 L. Jing-Nang., L. Tsung-Ming., Ch. Chien-Chih. Modeling validation and control analysis for temperature and humidity controlled air conditioning system. “Journal world of science”, 2014. 10.
4 N.A. Aleshkin. Formation of membership functions under conditions of recurrent monitoring. “Standards and quality”, 2017.
5 N.A. Alyoshkin. “Automatic microclimate control in industrial premises based on the implementation of fuzzy regulation procedures”, 2016. 787.
6 N.A. Kabulov. Control systems for technological complexes in the processing of oilseeds in small batches. “Universitet: technical sciences: electron. Scientific magazine”, 2020. 12
7 C. Antonio., C. Caputo., M. Pacifico. “Applied heat engineering”, 2000. 49
8 S. Soyguder., M. Karakose., H. Alli. “HVAC system design and simulation of PID self-tuning”, 2009. 4566.
9 S. Soyguder., S. Alli. “Expert systems with applications”, 2010. 2072
10 E.G. Krushel., V.G. Semenov., I.V. Stepanchenko., V.V. Surgutanov. Nonlinear microclimate control algorithms. “Publishing house Volga STU”, 2007. 89.
11 D. Rutkovskaya., M. Pilinsky., L. Rutkovsky. “Neural networks, genetic algorithms and fuzzy systems translation from Polish by I.D. Rudinsky”, 2006. 452.
12 A.P. Rotshtein. “Technologies of intelligent identification: fuzzy logic, genetic algorithms, neural networks”, 1999. 320.
13 A. N. Averkin., D. A. Pospelova. “Fuzzy sets in models of control and artificial intelligence”, 1986. 312.
14 S.D. Shtovba. Introduction to the theory of fuzzy sets and fuzzy logic. “Vinnitsa: ContinentPrime”, 2003. 198.
15 C. Kuentai., M.J. Rys, E.S. Lee. Modeling of thermal comfort in air-conditioned rooms by fuzzy regression analysis. “Mathematical and computer modelling”, 2006. 809.
16 M. Chan. Control of approach and landing phase for reentry vehicle using fuzzy logic. “Aerospace science and technology”, 2011. 269.
17 S. Soyguder., H. Alli. Fuzzy adaptive control for the actuators position control and modeling of an expert system. “Expert systems with applications”, 2010. 2072.
18 S. Gunasekaran. “Automation of food processing” Encyclopedia of life support system. “Food engineering”, 2009. 26
19 C.C. Antonio., M.P. Pacifico. Fuzzy control of heat recovery systems from solid bed cooling. “Applied thermal engineering”, 2000. 49.
Kutilmoqda