95

In this work, a biodegradable graft copolymer based on linear low density polyethylene grafted maleic anhydride and gelatin (LLDPE-g-MA/Gel) was formed by reactive mixing of functionalized polyethylene with gelatin to achieve finely dispersed blend morphology. Using a selection of components of the mixture, we’d studied its morphology and thermal properties. It was found that thermal stability (initial temperature) of the composition decreases as the amount of gelatin increases due to degradation of gelatin. In the temperature range of 400-500 ºC, the maximum rate of destruction of the graft copolymer increases significantly with higher gelatin content. Samples having identical composition were selected using a Brabender plastograph and a mechanical mixer; and when taken at different rates, the morphological structure of the samples was determined to depend on their mixing rate. The morphological structure was found to show that increased speed leads to effective reaction of two components and crushing of particles into smaller ones.

  • O'qishlar soni17
  • Nashr sanasi15-08-2023
  • Asosiy tilIngliz
  • Sahifalar37-44
Ўзбек

Ushbu maqolada nozik disperslangan aralashma morfologiyasiga erishish uchun funksionallashtirilgan polietilenni jelatin bilan reaktiv aralashtirishda chiziqli past zichlikli polietilen payvandlangan maleik angidrid va jelatin (LLDPE-g-MA/Gel) asosida bioparchalanuvchi payvand sopolimeri hosil qilish jarayoni yoritilgan. Aralashmaning tarkibiy qismlarini tanlash yordamida uning morfologiyasi va termal xususiyatlari o‘rganildi. Jelatin degradatsiyasi tufayli uning miqdori oshgani sayin kompozitsiyaning termal barqarorligi (dastlabki harorat) pasayishi aniqlandi. 400–500ºC harorat oralig‘ida jelatin miqdori ortishi bilan payvand sopolimerining parchalanish tezligi sezilarli darajada oshadi. Xuddi shu tarkibdagi namunalar Brabender plastografi va mexanik aralashtirgich yordamida olindi va namunalarning morfologik tuzilishi ularning aralashtirish tezligiga qarab aniqlandi. Morfologik tuzilishiga ko‘ra, tezlik ortib borishi ikki komponentning samarali reaksiyaga kirishishi va zarralarning kichrayishiga olib keladi.

Русский

В этой работе биоразлагаемый привитой сополимер на основе линейного полиэтилена низкой плотности с привитым малеиновым ангидридом и желатином (LLDPE-g-MA/Gel) был получен путем реактивного смешивания функционализированного полиэтилена с желатином для достижения мелкодисперсной морфологии смеси. С помощью подбора компонентов смеси изучены ее морфология и термогравиметрические свойства. Установлено, что термостабильность (начальная температура) композиции снижается по мере увеличения количества желатина за счет его деградации. В интервале температур 400–500 ºС с увеличением содержания желатина максимальная скорость разрушения привитого сополимера значительно возрастает. Образцы одинакового состава отбирали с помощью пластографа Брабендера, механической мешалки, определяли морфологическую структуру образцов в зависимости от скорости их перемешивания. По морфологической структуре было установлено, что увеличение скорости приводит к эффективной реакции двух компонентов и дроблению частиц на более мелкие.

English

In this work, a biodegradable graft copolymer based on linear low density polyethylene grafted maleic anhydride and gelatin (LLDPE-g-MA/Gel) was formed by reactive mixing of functionalized polyethylene with gelatin to achieve finely dispersed blend morphology. Using a selection of components of the mixture, we’d studied its morphology and thermal properties. It was found that thermal stability (initial temperature) of the composition decreases as the amount of gelatin increases due to degradation of gelatin. In the temperature range of 400-500 ºC, the maximum rate of destruction of the graft copolymer increases significantly with higher gelatin content. Samples having identical composition were selected using a Brabender plastograph and a mechanical mixer; and when taken at different rates, the morphological structure of the samples was determined to depend on their mixing rate. The morphological structure was found to show that increased speed leads to effective reaction of two components and crushing of particles into smaller ones.

Havola nomi
1 Ashurov, N., Sadikov, Sh., Khakberdiev, O., Berdinazarov, K., Normurodov, N. (2020). Preparation and properties of compositions based on polyethylene and gelatin. Uzbek Chemical Journal, 6(3), 53-60.
2 Bastioli, C. (2001). Global status of the production of biobased packaging materials. Starch-Stärke, 53(8), 351-355.
3 Behera, K., Sivanjineyulu, V., Chang, Y. & Chiu, F. (2018). Thermal properties, phase morphology and stability of biodegradable PLA/PBSL/HAp composites. Polymer Degradation and Stability, 154, 248- 260.
4 Felder, S., et al. (2020). Incorporating crystallinity distributions into a thermo-mechanically coupled constitutive model for semi-crystalline polymers. International Journal of Plasticity, 135, 102751.
5 Guo, Y., He, S., Yang, K., Xue, Y., Zuo, X., Yu, Y., & Rafailovich, M. (2016). Enhancing the mechanical properties of biodegradable polymer blends using tubular nanoparticle stitching of the interfaces. ACS applied materials & interfaces, 8(27), 17565-17573.
6 Harada M., Ohya, T., Iida, K., Hayashi, H., Hirano, K., Fukuda, H. (2007). Increased impact strength of biodegradable poly(lactic acid)/poly(butylene succinate) blend composites by using isocyanate as a reactive processing agent. Appl. Polym. Sci., 106, 1813-1820.
7 Inderjeet, K., et al. (2008). Biodegradation and swelling studies of gelatin-grafted polyethylene. Journal of Applied Polymer Science, 107(6), 3878-3884.
8 Kalb, B., & Pennings, A. (1980). General crystallization behaviour of poly (L-lactic acid). Polymer, 21(6), 607-612.
9 Li, H., & Yan, Sh. (2011). Surface-induced polymer crystallization and the resultant structures and morphologies. Macromolecules, 44(3), 417-428.
10 Lim, L., Auras, R., & Rubino, M. (2008). Processing technologies for poly (lactic acid). Progress in Polymer Science, 33(8), 820-852.
11 Meena, P., et al. (2017). Packaging material and need of biodegradable polymers. International Journal of Applied Research, 3(7), 886-896.
12 Mileva, D., Tranchida, D., & Gahleitner, M. (2018). Designing polymer crystallinity: An industrial perspective. Polymer Crystallization, 1(2), e10009.
13 Moreno, O., Díaz, R., Atarés, L., & Chiralt, A. (2016). Influence of the processing method and antimicrobial agents on properties of starch-gelatin biodegradable films. Polymer International, 65(8), 905-914.
14 Nayak, P. (1999). Biodegradable polymers: opportunities and challenges, 481-505.
15 Normurodov, N., Berdinazarov, K., Khakberdiev, E., Dusiyorov, N., & Ashurov, N. (2022). Mechanical properties of biodegradable composites based on polyethylene and gelatin. Science and Innovative Development, 5(12).
16 Normurodov, N., Berdinazarov, Q., Haqberdiyev, E., Dusiyorov, N., & Ashurov, N. (2022). Mechanical properties of biodegradable composites based on polyethylene and gelatin. Proceedings of the Uzbek-Kazakh Symposium “Ongoing problems of polymer science”, 60.
17 Raquez, J.-M., Ramani N., & Dubois, Ph. (2008). Recent advances in reactive extrusion processing of biodegradable polymer-based compositions. Macromolecular Materials and Engineering, 293(6), 447- 470.
18 Rustgi, Ch., & Rustgi, R. (1998). Biodegradable polymers. Progress in Polymer Science, 23(7), 1273-1335.
19 Sarker, B., Dey, K., & Khan, R. (2011). Effect of incorporation of polypropylene on the physico-mechanical and thermo-mechanical properties of gelatin fiber based linear low density polyethylene bio-foamed composite. Journal of Thermoplastic Composite Materials, 24(5), 679-694.
20 Tian, K., & Bilal, M. (2020). Research progress of biodegradable materials in reducing environmental pollution. Abatement of Environmental Pollutants, 313-330.
21 Vilay, V., Mariatti, M., Ahmad, Z., Pasomsouk, K., Todo, M. (2009). Characterization of the mechanical and thermal properties and morphological behavior of biodegradable poly(L-lactide)/ poly(ε-caprolactone) and poly(L-lactide)/poly(butylene succinate-co-L-lactate) polymeric blends. Appl. Polym. Sci., 114, 1784-1792.
22 Visakh, P., & Nazarenko, O. (2015). Thermal degradation of polymer blends, composites and nanocomposites. Springer International Publishing.
23 Wollerdorfer, M., & Bader, H. (1998). Influence of natural fibres on the mechanical properties of biodegradable polymers. Industrial crops and products, 8(2), 105-112.
Kutilmoqda