35

The article presents a monitoring system based on the Global Navigation Satellite
System (GNSS) for assessing deformations in mining areas. The study was conducted at the Kalmakyr
open-pit mine, where a network of seven GNSS stations was installed in the most geologically
vulnerable zones. Four static measurement cycles were carried out between 2024 and 2025. Highfrequency 3D data were processed using the GAMIT/GLOBK software. The analysis showed that
displacements in active areas reached 68 mm horizontally and 31 mm vertically.
 

  • Internet havola
  • DOI https://doi.org/10.59048/2181-1180.1737
  • UzSCI tizimida yaratilgan sana 07-11-2025
  • O'qishlar soni 35
  • Nashr sanasi 06-11-2025
  • Asosiy tilIngliz
  • Sahifalar31-36
English

The article presents a monitoring system based on the Global Navigation Satellite
System (GNSS) for assessing deformations in mining areas. The study was conducted at the Kalmakyr
open-pit mine, where a network of seven GNSS stations was installed in the most geologically
vulnerable zones. Four static measurement cycles were carried out between 2024 and 2025. Highfrequency 3D data were processed using the GAMIT/GLOBK software. The analysis showed that
displacements in active areas reached 68 mm horizontally and 31 mm vertically.
 

Havola nomi
1 1. Ramme, V. Yu., & Yaroshevich, V. V. (2009). Kar'er "Kalmakyr": stanovlenie, razvitie, perspektivy. Gornyy zhurnal, (S1), 30-35. 2. Esina, E. N., & Doskalov, A. I. (2022). Analiz nablyudeniy za deformatsiyami bortov pri razrabotke glubokikh gorizontov kar'yera “Kalmakyr” (Uzbekistan). Problemy i perspektivy kompleksnogo osvoeniya i sokhraneniya zemel, 14, 91. 3. Pašava, J., Vymazalová, A., Košler, J., Koneev, R. I., Jukov, A. V., & Khalmatov, R. A. (2010). Platinumgroup elements in ores from the Kalmakyr porphyry CuAu-Mo deposit, Uzbekistan: Bulk geochemical and laser ablation ICP-MS data. Mineralium Deposita, 45(4), 411- 418. https://doi.org/10.1007/s00126-010-0286-7
2 4. Akhmedov, M. K., & Isomatov, Y. P. (2021). On the formation of technogenic changes in the geological environment in the deposits of the Almalyk mining region. International Journal of Emerging Trends in Engineering Research, 11(4), 4681-4698. 5. Kosimov, M. O., Khalkulova, Kh. K., & Ermatov, N. M. U. (2024). Gidrologicheskaya obstanovka na kar'yere “Kalmakyr”. Eurasian Journal of Technology and Innovation, 2(4), 52-58. 6. Samadova, G. M., Erkabayeva, S. I., Akhmadov, U. A., & Obidjonov, D. A. (2024). Analiz issledovaniy geologicheskoy i geodinamicheskoy situatsii, gidrogeologicheskikh i inzhenerno-geologicheskikh usloviy obyedinyonnogo khvostokranilishcha mestorozhdeniya Kalmakyr. IMRAS, 7(6), 21-29. https://doi.org/10.5281/zenodo.11523178
3 7. Khasanov, A. S., Karimov, Yo. L., Latipov, Z. Yo., & Egamberdiev, B. B. U. (2024). Prognoznaya otsenka izmeneniya inzhenerno-geologicheskikh usloviy mestorozhdeniya Kalmakyr. Sanoatda raqamli texnologiyalar / T ͡ Sifrovye tekhnologii v promyshlennosti, 2(1), 46-53. 8. Cina, A., & Piras, M. (2015). Performance of low-cost GNSS receiver for landslides monitoring: Test and results. Geomatics, Natural Hazards and Risk, 6(5-7), 497-514.
4 9. Zhuang, W., Li, Y., Hao, M., Song, S., Liu, B., & Fan, L. (2024). Quantifying Creep on the Laohushan Fault Using Dense Continuous GNSS. Remote Sensing, 16(19), 3746. 10. Labant, S., Bindzarova Gergelova, M., Kuzevicova, Z., Kuzevic, S., Fedorko, G., & Molnar, V. (2020). Utilization of geodetic methods results in small open-pit mine conditions: A case study from Slovakia. Minerals, 10(6), 489. 11. Hao, W., Chuang, H., Jianhua, Z., Havwang, Y. E., Hua, L. I., & Guangming, B. A. O. (2015). Deformation Monitoring System for High Slope in Open Pit Mine with the Integration of GNSS and GIS. Geomatics & Information Science of Wuhan University, 40(5).
5 12. Wajs, J., Trybała, P., Górniak-Zimroz, J., Krupa-Kurzynowska, J., & Kasza, D. (2021). Modern solution for fast and accurate inventorization of open-pit mines by the active remote sensing technique-case study of Mikoszów granite mine (Lower Silesia, SW Poland). Energies, 14(20), 6853. 13. Fazilova, D., Makhmudov, M., & Khalimov, B. (2025). The Analysis of Crustal Deformation Patterns in the Tashkent Region, Uzbekistan, Derived from GNSS Data Over the Period 2018-2023. Geodesy and Geodynamics, 16(2), 137-146. https://doi.org/10.1016/j.geog.2024.07.001
6 14. Fazilova, D., Tukhtameshov, F., Rakhimberdieva, M., Kazakov, A., & Magdiev, Kh. (2025). GNSS-based Subsidence Monitoring of Shurtan's Gas Reservoir in Uzbekistan. Acta IMEKO, 14(1), 1-6. https://doi.org/10.21014/actaimeko.v14i1.1866 15. Herring, T. A., King, R. W., Floyd, M., & McClusky, S. C. (2018). Introduction to GAMIT/GLOBK (Release 10.7). Technical Report. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology. Retrieved from http://geoweb.mit.edu/gg/Intro_GG.pdf (accessed: 10.09.2020)
7 16. Petit, G., & Luzum, B. (Eds.). (2010). IERS Conventions (2010). IERS Technical Note No. 36. Frankfurt am Main: Verlag des Bundesamts für Kartographie und Geodäsie. Retrieved from https://www.iers.org/SharedDocs/Publikationen/EN/IERS /Publications/tn/TechnNote36/tn36.html (accessed: 15.09.2020) 17. Herring, T. A., King, R. W., & McClusky, S. C. (2010). Global Kalman Filter VLBI and GPS Analysis Program: GLOBK Reference Manual, Release 10.5. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology. http://chandler.mit.edu/~simon/gtgk/GLOBK_Ref.pdf (accessed: 15.09.2020)
Kutilmoqda