In article discusses issues for solving optimization problems based on the use of genetic
algorithms. To date, the genetic use algorithm for solving various problems. Which includes the
shortest path search, approximation, data filtering and others. In particular, data is being
examined regarding the use of a genetic algorithm to solve problems of optimizing the modes of
electric power systems. Imagine an algorithm for developing the development of mathematical
models, which includes developing the structure of the chromosome, creating a started
population, creating a directing force for the population, etc. As well as the presentation, the
selected structure should take into account all the features and limitations imposed on the desired
solution, as well as the fact that the implementation of crossоver and mutation algorithms directly
depends on its choice. To solve optimization problems, a block diagram of the genetic algorithm is
given.
Maqolada genetik algoritmlardan foydalanishga asoslangan optimallashtirish
muammolarini hal qilish masalalari ko'rib chiqilgan. Bugungi kunga kelib, turli xil
muammolarni hal qilish uchun genetik algoritmlardan foydalaniladi. Bu eng qisqa yo'llarni
qidirish, yaqinlashtirish, ma'lumotlarni filtrlash va boshqalarni o'z ichiga oladi. Xususan, elektr
tarmoqlari holatlarini optimallashtirish muammolarini hal qilish uchun genetik algoritmlardan
foydalanish to'g'risidagi ma'lumotlar o'rganilgan. Xromosoma tuzilishini rivojlantirish,
boshlang'ich populyatsiyani yaratish, populyatsiya uchun yo'naltiruvchi kuchni yaratish va
boshqalarni o'z ichiga olgan matematik modellarni ishlab chiqish algoritmikeltirib o’tilgan.
Bundan tashqari, tanlangan sxema kerakli yechimga bog'liq bo'lgan barcha xususiyatlar va
cheklashlarni, shuningdek, o'tish va mutatsion algoritmlarni amalga oshirish uni tanlashga
bevosita bog'liqligini hisobga olishi kerakligi ham ko’rsatib o’tilgan. Optimallashtirish
muammolarini hal qilish uchun genetik algoritmning blok-sxemasi berilgan.
In article discusses issues for solving optimization problems based on the use of genetic
algorithms. To date, the genetic use algorithm for solving various problems. Which includes the
shortest path search, approximation, data filtering and others. In particular, data is being
examined regarding the use of a genetic algorithm to solve problems of optimizing the modes of
electric power systems. Imagine an algorithm for developing the development of mathematical
models, which includes developing the structure of the chromosome, creating a started
population, creating a directing force for the population, etc. As well as the presentation, the
selected structure should take into account all the features and limitations imposed on the desired
solution, as well as the fact that the implementation of crossоver and mutation algorithms directly
depends on its choice. To solve optimization problems, a block diagram of the genetic algorithm is
given.
В статье рассматриваются вопросы решения задач оптимизации на основе
использования генетических алгоритмов. На сегодняшний день генетический алгоритм
используется для решения различных задач, к которым относятся: поиск кратчайшим
путѐм, аппроксимация, фильтрация данных и другие. В частности, рассматривается
вопрос использования генетического алгоритма для решения задач оптимизации
режимов электроэнергетических систем. Представляем алгоритм по математической
модели, который включает разработку структуры хромосомы, создания начал
популяции, создания направляющий силы популяции и др. А также выбранная структура
должна учитывать все особенности и ограничения, предъявляемые к искомому решению,
а также то, что от еѐ выбора напрямую зависит реализация алгоритмов кроссовер и
мутации. Для решения задач оптимизации приведен блок схемы генетического
алгоритма.
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Pulatov B.M. | katta o'qituvchi | TDTU |
№ | Havola nomi |
---|---|
1 | Emilyanov V.V., Kureychik V.M. Teoriya I praktika evolyusionnogo modelirovaniya. - М: Fizmatlit, 2013. – s. 432. 2. Gladkov L.A., Kureychik V.V., Kureychik V.M. Geneticheskiye algoritmi: Uchebnoye posobiye. - 2-е izd. - М: Fiznatlit, 2006. - s. 320. 3. Darrel Whitley "A Genetic Algorithm Tutorial", 2016.-256 p. 4. Tsoy Yu.R., Spistin V.G. Geneticheskiy algoritm/Spisin V.G., Tsoy Yu.R. Predstavleniye znaniy v informatsionnix sistemax: uchebnoe posobie. -Tomsk: Izd-vo TPU, 2016. -146 s. 5. Gayibov T.Sh., Pulatov B.M., Qayumov J.A. Minimization of Losses in Distributed Power Networks by Genetic Algorithms.- International Journal of Advanced Research in Science, Engineering and Technology.-Vol. 6, Issue 2, February 2019.- pp. 8037-8039. 6. Deb K., Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons 7. AbdellahLaoufi , Collective Intelligence for Optimal Power Flow Solution Using Ant Colony Optimization, Leonardo Electronic Journal of Practices and Technologies, p.88-105,2008. 8. Gayibov T.Sh. Effektivniy algoritm optimizasii rejimov energosistem // Sbornik statey mejdunarodnoy nauchnoy konferensii «Innovasiya-2002». – Tashkent, 2002. – S. 90-91. 9. Rana S.B., Whitley L.D., Bit representations with a twist. – Proc. 7th International Conference of Genetic Algorithms, 1997. Техника фанлари ва инновация №2/2019 й. Technical science and innovation 230 10. Ruderich R., Fuel Cell Principles. Lecture notes. University of Applied Sciences, Ulm, Germany. 2003. 11. Sopov E.A. Probabilistic genetic programming design // Actual problems of informatics and intelligent techniques. - Tambov, 2004. - P. 98 – 99. 12. Larmine J., Dicks A. Fuel Cell Systems Explained, Second Edition. – John Wiley & Sons, Ltd, 2003. 13. Ruban A.I. Metodi optimizasii: Uchebnoe posobie. Izd. 2-ое. Krasnoyarsk NII IPU, 2001. 528 s. 14. Bartolomey P.I., Panikovskaya T.А. Optimizasiya rejomov energosistem: Uchebnoe posobie / Еkaterinburg: UGTU – UPI, 2008. - 164 s. 15. Makoklyuyev B.I. Analiz I planirovaniye elektropotrebleniya. – М.: Energoatomizdat, 2008. - 296 s. 16. Filippova T.A. i dr. Optimizasiya rejimov elektrostansiy i energosistem: Uchebnik; – Novosib. gos. texn. un-t. - Novosibirsk, 2007. - 356 s. 17. Suxanov О.А., Sharov Yu.V. Ierarxicheskiye modeli v analize i upravlenii rejimami elektroenergeticheskix system.– М.: Izdatelskiy dom MEI, 2007. – 312 s. 18. Likin A.V. Elektricheskie sistemi i seti: Ucheb. posobiye. – М.: Universitetskaya kniga; Logos, 2006. – 254 s. 19. Kochura А.V. Geneticheskiye algoritmi v MatLAB: metodicheskiye ukazaniya. – Kursk: Avtorskaya redaksiya, 2010. – 19 s 20. Whitley D.L. Genetic Algorithms and Evolutionary Computing. Van Nostrand's Scientific Encyclopedia 2002.. UDC. 621.311 |