In article, the solution of problem of the combined use of fuel in operation is considered.
It is shown that during the operation of the gasoline automobile engine the requirement to
octane number of fuel changes depending on engine operation mode: at increase in rotary speed
the required octane number of fuel decreases, and at increase in loading increase in octane
Mechanical Engineering
264
number of fuel is necessary. The combined use of low-bracket gasoline with high-octane
liquefied gas is given. The condition supporting necessary octane number of fuel on various
modes for ensuring without detonation work and optimization of combustion procedure is
defined. At all engine operating modes in operation on combined fuel, only a high-octane
component should be supplied. To control the change in the ratio of the supplied components of
the combined power system, it is necessary and sufficient to use any combination of the following
parameters: p – vacuum in the intake manifold; n – is the engine speed; B – is the degree of
opening of the throttle valve of the carburetor, or others, which are functionally dependent on
the above. As a result, the feasibility of choosing one or another option is determined by the
design features of the fuel combination implementation system.
Maqolada yonilg’ini kombinaciyalashtirib foydalanish masalasi echilgan. Avtomobil benzinli
dvigatelining ishlashida yonilg’ining oktan soniga bo'lgan talablar dvigatelning ish rejimiga
qarab o'zgarishi ko'rsatilgan: aylanishlar chastotasi ortganda talab qilinadigan yonilg’ining
oktan soni pasayadi, yuk ortganda esa yonilg’ining oktan sonini orttirish zarur. Past oktanli
benzinning yuqori oktanli suyuqlashtirilgan gaz bilan kombinaciyalashtirilib foydalanilishi
keltirilgan. har xil ish rejimlarida yonilg’ining zarur bo'lgan oktan sonini ta'minlovchi
detonaciyasiz ishlash va yonish jarayonini optimallashtirish shartlari aniqlangan.
Ekspluatatciyada dvigatelning hamma ish rejimlarida faqat yuqori oktanli yonilg’i uzatilishi
kerak. Kombinaciyalashgan ta'minlash tizimi uzatayotgan komponentlarning nisbatini
o'zgartirish uchun quyidagi parametrlarning istalgan birikmasidan foydalanish zarur va etarli: -kiritish kanalida bosimning pasayishi; - dvigatel tirsakli valining aylanishlar chastotasi; -kiritish tizimidagi drossel to'sig’ining ochiqlik darajasi. U yoki bu variantning maqsadga
muvofiqligi yonilg’ilarni kombinaciyalashni realizatsiya qilish tizimining konstruktiv
hususiyatlari bilan belgilanadi.
In article, the solution of problem of the combined use of fuel in operation is considered.
It is shown that during the operation of the gasoline automobile engine the requirement to
octane number of fuel changes depending on engine operation mode: at increase in rotary speed
the required octane number of fuel decreases, and at increase in loading increase in octane
Mechanical Engineering
264
number of fuel is necessary. The combined use of low-bracket gasoline with high-octane
liquefied gas is given. The condition supporting necessary octane number of fuel on various
modes for ensuring without detonation work and optimization of combustion procedure is
defined. At all engine operating modes in operation on combined fuel, only a high-octane
component should be supplied. To control the change in the ratio of the supplied components of
the combined power system, it is necessary and sufficient to use any combination of the following
parameters: p – vacuum in the intake manifold; n – is the engine speed; B – is the degree of
opening of the throttle valve of the carburetor, or others, which are functionally dependent on
the above. As a result, the feasibility of choosing one or another option is determined by the
design features of the fuel combination implementation system.
В статье рассмотрено решение задачи комбинированного использования топлива
в эксплуатации. Показано, что при работе бензинового автомобильного двигателя
требование к октановому числу топлива изменяется в зависимости от режима работы
двигателя: при повышении частоты вращения требуемое октановое число топлива
снижается, а при увеличении нагрузки необходимо увеличение октанового числа топлива.
Приведено комбинированное использование низкооктанового бензина с высокооктановым
сжиженным газом. Определено условие, поддерживающее необходимое октановое число
топлива на различных режимах для обеспечения бездетонационной работы и
оптимизации процесса сгорания. На всех режимах работы двигателя в эксплуатации на
комбинированном топливе должен подаваться только высокооктановый компонент. Для
управления изменением соотношения подаваемых компонентов комбинированной
системы питания необходимо использовать любое сочетание из следующих параметров:
– разрежение во впускном коллекторе; – частота вращения коленчатого вала
двигателя; – степень открытия дроссельной заслонки карбюратора, или другие,
находящиеся в функциональной зависимости от вышеуказанных. В результате
целесообразность выбора того или иного варианта определяется конструктивными
особенностями системы реализации комбинирования топлив.
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Tulaev B.R. | Professor | TDTU |
2 | Viarshyna G.A. | dotsent | Belarusian National Technical University |
3 | Mirzaabdullaev J.B. | kat o'qituvchi | TDTU |
4 | Khakimov J.O. | dotsent | TDTU |
№ | Havola nomi |
---|---|
1 | Grafov P.O. Stimulirovanii primeneniya prirodnogo gaza v kachestve motornogo topliva v nekotorix stranax mira (dannie 1999-2002 g.g.) // AvtoGazoZapravochniy Kompleks + Alternativnoe toplivo, 2003. №1. S. 66-69. 2. Pat. 2211360 RF, MPK 7 F 02 M 21/04, F 02 V 69/04. Dvuxtoplivnaya sistema pitaniya dlya gazovogo DVS / N.G. Pevnev, A.V. Trofimov, I.V, Xamov (RF)// Otkritiya. Izobreteniya, 2003. №24. 3. Tulaev B.R., Khakimov J.O., Mirzaabdullayev J.B. Matematicheskaya model peremesheniya reyki toplivnogo nasosa dvigatelya vnutrennego sgoraniya. East European Scientific Journal. (Warsaw, Poland), 2018. №2 (30). P. 66-68. 4. Frolov Yu. Sovershenstvovanie ekologicheskix xarakteristik gazoballonnix avtomobiley / Yu.Frolov, A.Petrov, A.SHiryaev // AvtoGazo-Zapravochniy Kompleks + Al’ternativnoe toplivo, 2003. №6(12). S. 28-32. 5. Matmurodov F.M., Daminov O.O., Mirzaabdullayev J.B., Hakimov Zh.O. Mathematical modeling of transfer of the moment from the engine to the executive mechanism. Austria, Vienna. “East West” Association for Advanced Studies and Higher Education GmbH. European science review (Scientific journal). 2017. № 3–4. (March–April), P. 75-77. 6. Tulaev B.R. Matematicheskoe modelirovanie protsessov teploobmena v DVS/ Monografiya. – Tashkent: Adabiyot uchquni, 2018. S. 176. 7. Toʻlayev B.R. Ichki yonuv motorlari nazariyasi va dinamika asoslari. T.: Fan va texnologiya. 2010, – 294 b. 8. Fuhs, A.E. (2009) Hybrid Vehicles and the Future of Personal Transportation. CRC Press, ISBN 978-1-4200-7534-2. 9. Bin Tang, M.J. Brennan, "On the shock performance of a nonlinear vibration isolator with high-static-low-dynamic-stiffness", Original Research Article International Journal of Mechanical Sciences, Vol. 81, April 2014, pp. 207-214, 2014. 10. Bazarov B.I. Ekologicheskaya bezopasnost avtotransportnix sredstv. Uchebnik. – LAP, 2013. – 256 s. 11. Bazarov B.I., Kalauov S.A. Ekspluatatsiya i ispitanie dvigateley vnutrennego sgoraniya. Uchebnoe posobie. – Tashkent: Voris-Nashriyot, 2014. – 272 s. 12. Fayziyev M.M., Miryunusov M.M., Orifjonov M.M., Bozorov B.I. Ichki yonuv dvigatellari. – T.: «Turon-iqbol» , 2007. – 608 bet. 13. Lapidus A.A. Alternativnie motornie topliva. -M.: Sentr LitNeftegaz, 2008. -285s. 14. S.V. Falaleev, “Hydrodynamic characteristics of the face seal taking into account lubricant film breakdown, inertial forces and complex clearance form”, Life Science Journal, vol.11(9), pp. 337-343, 2014. 15. Jeong, H.Y. Fluid–structure interaction in water-filled thin pipes of anisotropic composite materials [Text] / H. Y. Jeong, K. Inaba // Journal of Fluids and Structures. – 2013. – Vol. 36. – P. 162 – 173. Mechanical Engineering 270 16. Tom Denton. Electric and Hybrid Vehicles 1st Edition. Routledge; 2016. p.208. 17. Tom Denton. Automobile Electrical and Electronic Systems, 5th ed. 2017. p.700. 18. Amir Taghavipour, Mahyar Vajedi, Nasser L Azad. Intelligent Control of Connected Plug-in Hybrid Electric Vehicles. Springer. 2019. p.198. 19. Keum-Shik Hong, Umer Hameed Shah. Dynamics and Control of Industrial Cranes. Springer. 2019. p.177. 20. Péter Gáspár, Balázs Németh. Predictive Cruise Control for Road Vehicles Using Road and Traffic Information. Springer International Publishing. 2019. p.226. 21. Willard W. Pulkrabek. Engineering Fundamentals of the Internal Combustion Engine. Prentice Hall. Upper Saddle River, New Jersey, 2003. – 345 r. |