518

Maqolada bir jinsli bo‘lmagan to‘lqin tenglamasi uchun Koshi masalasining yechimi bo‘lmish D’yuamel integrali bevosita usulda hosil qilingan.

  • Internet havola
  • DOI
  • UzSCI tizimida yaratilgan sana 21-06-2021
  • O'qishlar soni 517
  • Nashr sanasi 17-09-2014
  • Asosiy tilO'zbek
  • Sahifalar12-16
Ўзбек

Maqolada bir jinsli bo‘lmagan to‘lqin tenglamasi uchun Koshi masalasining yechimi bo‘lmish D’yuamel integrali bevosita usulda hosil qilingan.

Русский

В статье представлен непосредственный метод получения интеграла Дьюамеля, являющийя решением задачи Коши для неоднородного уравнения колебания струны.

English

This article discusses the ways of direct creating Dyamel integral which is the settlement of hetregeneous wave equation of Koshi problem.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Ibaydullayev T.T.
Havola nomi
1 1. Курант Р. Уравнения с частными производными. – М.: Мир, 1964. 2. Салоҳиддинов М.С. Математик физика тенгламалари. – Т.: Ўзбекистон, 2002. 3. Тихонов А.Н., Самарский А.А. Уравнения математической физики. – М.: Наука, 1997. 4. Смирнов В.И. Курс высшей математики. Т. II,. – М.: Госиздат, 1962. 5. Смирнов М.М. Дифференциальные уравнения в частных производных второго порядка. – Минск, 1974. 6. Положий Г.Н. Уравнения математической физики. – М.: Высшая школа, 1964. 7. Владимиров В.С. Уравнения математической физики. – М.: Наука, 1981. 8. Соболев С.Л. Уравнения математической физики. – М.: Наука, 1966.
Kutilmoqda