229

Инсон  танасидаги  паразитларни  гелминтик  ривожланишининг 
динамикасини  ѐритишга  харакат  қилинади.  Паразитлар  ривожланишини
математик  модели  ва  дифференциал  тенгламалар  ѐрдамида  бошлангич 
шартлардан фойдаланган холда уларнинг вақт  ўзгариши динамикасини  ѐритиб 
беради.

  • Internet havola
  • DOI
  • UzSCI tizimida yaratilgan sana 02-12-2021
  • O'qishlar soni 229
  • Nashr sanasi 21-03-2024
  • Asosiy tilO'zbek
  • Sahifalar280-288
Ўзбек

Инсон  танасидаги  паразитларни  гелминтик  ривожланишининг 
динамикасини  ѐритишга  харакат  қилинади.  Паразитлар  ривожланишини
математик  модели  ва  дифференциал  тенгламалар  ѐрдамида  бошлангич 
шартлардан фойдаланган холда уларнинг вақт  ўзгариши динамикасини  ѐритиб 
беради.

English

In  the  article  we  will  consider  the  types  of  helminths  found  in  the  body  of 
young  children,  their  distribution,  reproduction  and  harm  to  the  human  body.  And 
also effective methods of treating these helminths in children.  An attempt has been 
made to describe the dynamics of the development of helminthic invasion  -  parasites 
in  the  human  body.  With  the  help  of  differential  equations  using  a  mathematical model  of  the  development  of  parasites,  the  dynamics  of  their  change  in  time  is 
described using the initial conditions.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Baxramov R.R. o'qituvchi Samarqand davlat tibbiyot instituti
2 Malikov M.R. dotsent Samarqand davlat tibbiyot instituti
Havola nomi
1 G. A. Bocharov. Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses // J. Theor. Biol. 1998. Vol. 192, No. 3, P. 283–308. [1]
2 Н.М. Матвеев «Сборник задач и упражнений по обыкновенным дифференциальным уравнениям», Вышэйшая школа, Минск.1970г
3 G. A. Bocharov, G. I. Marchuk, A. A. Romanyukha. Numerical solution by LMMs of stiff delay differential systems modelling an immune response // NumerischeMathematik 1996. Vol. 73, No. 2, P. 131–148.
4 A. V. Boiko, Y. M. Nechepurenko, M. Sadkane. Computing the maximum amplification of the solution norm of differential-algebraic systems // Comput. Math. Model. 2012. Vol. 23, No. 2, P. 216–227
5 A. V. Boiko, Y. M. Nechepurenko, M. Sadkane. Fast computation of optimal disturbances for duct flows with a given accuracy // Comput. Maths Math. Phys. 2010. Vol. 50, No. 11, P. 1914–1924.
6 A. V. Boiko, A. V. Dovgal, G. R. Grek, V. V. Kozlov. Physics of Transitional Shear Flows: Instability and Laminar–Turbulent Transition in Incompressible NearWall Shear Layers. Berlin: Springer, 2011. 98 p
7 D. Moskophidis, F. Lechner, H. Pircher, R. M. Zinkernagel. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells // Nature 1993. Vol. 362, P. 758–758.
8 Y. M. Nechepurenko, M. Sadkane. Computing humps of the matrix exponential // J. Comput. Appl. Math. (2017 (to appear)).
9 Y. M. Nechepurenko, M. Sadkane. A low-rank approximation for computing the matrix exponential norm // SIAM J. Matrix. Anal. Appl. 2011. Vol. 32, No. 2, P. 349–363.
10 M. Nowak, R. M. May. Virus dynamics: mathematical principles of immunology and virology. Oxford: Oxford University Press, 2000. 11. W. E. Paul. The Immune System—Complexity Exemplified // MMNP 2012. Vol. 7, No. 5, P. 4–6.
11 A. S. Perelson, P. W. Nelson. Mathematical analysis of HIV-1 dynamics in vivo // SIAM Rev. 1999. Vol. 41, No. 1, P. 3–44.
12 B. T. Polyak, P. S. Shcherbakov, M. V. Khlebnikov. Control of linear systems subjected to exogenous disturbances: the linear matrix inequality technique. Moscow: LENAND, 2014.
13 S.S Nabiyeva, A.A. Rustamov, M.R. Malikov, N.I. Ne'matov // Concept Of Medical Information // European Journal of Molecular & Clinical Medicine, 7 (7), 602-609 p, 2020
14 H.A. Primova, T.R. Sakiyev, S.S. Nabiyeva // Development of medical information systems // Journal of Physics: Conference Series 1441 (1), 012160, 2020.
Kutilmoqda