Инсон танасидаги паразитларни гелминтик ривожланишининг
динамикасини ѐритишга харакат қилинади. Паразитлар ривожланишини
математик модели ва дифференциал тенгламалар ѐрдамида бошлангич
шартлардан фойдаланган холда уларнинг вақт ўзгариши динамикасини ѐритиб
беради.
Инсон танасидаги паразитларни гелминтик ривожланишининг
динамикасини ѐритишга харакат қилинади. Паразитлар ривожланишини
математик модели ва дифференциал тенгламалар ѐрдамида бошлангич
шартлардан фойдаланган холда уларнинг вақт ўзгариши динамикасини ѐритиб
беради.
In the article we will consider the types of helminths found in the body of
young children, their distribution, reproduction and harm to the human body. And
also effective methods of treating these helminths in children. An attempt has been
made to describe the dynamics of the development of helminthic invasion - parasites
in the human body. With the help of differential equations using a mathematical model of the development of parasites, the dynamics of their change in time is
described using the initial conditions.
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Baxramov R.R. | o'qituvchi | Samarqand davlat tibbiyot instituti |
2 | Malikov M.R. | dotsent | Samarqand davlat tibbiyot instituti |
№ | Havola nomi |
---|---|
1 | G. A. Bocharov. Modelling the dynamics of LCMV infection in mice: conventional and exhaustive CTL responses // J. Theor. Biol. 1998. Vol. 192, No. 3, P. 283–308. [1] |
2 | Н.М. Матвеев «Сборник задач и упражнений по обыкновенным дифференциальным уравнениям», Вышэйшая школа, Минск.1970г |
3 | G. A. Bocharov, G. I. Marchuk, A. A. Romanyukha. Numerical solution by LMMs of stiff delay differential systems modelling an immune response // NumerischeMathematik 1996. Vol. 73, No. 2, P. 131–148. |
4 | A. V. Boiko, Y. M. Nechepurenko, M. Sadkane. Computing the maximum amplification of the solution norm of differential-algebraic systems // Comput. Math. Model. 2012. Vol. 23, No. 2, P. 216–227 |
5 | A. V. Boiko, Y. M. Nechepurenko, M. Sadkane. Fast computation of optimal disturbances for duct flows with a given accuracy // Comput. Maths Math. Phys. 2010. Vol. 50, No. 11, P. 1914–1924. |
6 | A. V. Boiko, A. V. Dovgal, G. R. Grek, V. V. Kozlov. Physics of Transitional Shear Flows: Instability and Laminar–Turbulent Transition in Incompressible NearWall Shear Layers. Berlin: Springer, 2011. 98 p |
7 | D. Moskophidis, F. Lechner, H. Pircher, R. M. Zinkernagel. Virus persistence in acutely infected immunocompetent mice by exhaustion of antiviral cytotoxic effector T cells // Nature 1993. Vol. 362, P. 758–758. |
8 | Y. M. Nechepurenko, M. Sadkane. Computing humps of the matrix exponential // J. Comput. Appl. Math. (2017 (to appear)). |
9 | Y. M. Nechepurenko, M. Sadkane. A low-rank approximation for computing the matrix exponential norm // SIAM J. Matrix. Anal. Appl. 2011. Vol. 32, No. 2, P. 349–363. |
10 | M. Nowak, R. M. May. Virus dynamics: mathematical principles of immunology and virology. Oxford: Oxford University Press, 2000. 11. W. E. Paul. The Immune System—Complexity Exemplified // MMNP 2012. Vol. 7, No. 5, P. 4–6. |
11 | A. S. Perelson, P. W. Nelson. Mathematical analysis of HIV-1 dynamics in vivo // SIAM Rev. 1999. Vol. 41, No. 1, P. 3–44. |
12 | B. T. Polyak, P. S. Shcherbakov, M. V. Khlebnikov. Control of linear systems subjected to exogenous disturbances: the linear matrix inequality technique. Moscow: LENAND, 2014. |
13 | S.S Nabiyeva, A.A. Rustamov, M.R. Malikov, N.I. Ne'matov // Concept Of Medical Information // European Journal of Molecular & Clinical Medicine, 7 (7), 602-609 p, 2020 |
14 | H.A. Primova, T.R. Sakiyev, S.S. Nabiyeva // Development of medical information systems // Journal of Physics: Conference Series 1441 (1), 012160, 2020. |