Ushbu maqolada chiqindi maxsulotlardan biosorbentlar ularni hossalari haqida qisqacha ma’lumot keltirilgan. Keltirilgan biosorbentlarga kimyoviy tarkibi o‘xshash va modifikatsiyalashga qulay funksiyanal guruhlarga ega sholi qobig‘ini mochovinaning suvli eritmada modifikatsiya sharoitlari keltirilgan. Mexnik tozalangan sholi qobig‘i, aktiflangan sholi qobig‘i hamda modifikatsiyalangan sholi qobig‘i namunalari tarkibi element analiz tahlili o‘tkazildi. Olingan biosorbentni fizik-kimyoviy xossalari o‘rganildi. Biosorbentni Ni(II) ionini statik sharoitda suniy eritmadan yutish maksimal miqdori 245.8 mg/g ekanligi aniqlandi. Eritma konsentratsiyasi, sorbsiya davomiyligi va haroratning sorbsiya jarayoniga ta’siri o‘rganildi. Biosorbentning metall ionilarini yutgan miqdori, eritmalarning UV-spektrofotometrdagi dastlabki va sorbsiyadan kiyingi nur sindirish ko‘rsatgichlarini eritma kansentratsiyasiga bog‘liqlik grafigi asosida xisoblab topildi. Aniqlangan metall ionlarining sorbent tomonidan yutilish kinetikasini o‘rganib, sorbsiya jarayoni psevdo-birinchi tartibiliy (R2=0.8132) va psevdo-ikkinchi tartibiliy (R2=0.999) kinetik modellari aniqlandi. Bundan sorbsiya jarayoni psevdo-ikkinchi kinetik modelga bo‘ysunishi aniqlandi.
Ushbu maqolada chiqindi maxsulotlardan biosorbentlar ularni hossalari haqida qisqacha ma’lumot keltirilgan. Keltirilgan biosorbentlarga kimyoviy tarkibi o‘xshash va modifikatsiyalashga qulay funksiyanal guruhlarga ega sholi qobig‘ini mochovinaning suvli eritmada modifikatsiya sharoitlari keltirilgan. Mexnik tozalangan sholi qobig‘i, aktiflangan sholi qobig‘i hamda modifikatsiyalangan sholi qobig‘i namunalari tarkibi element analiz tahlili o‘tkazildi. Olingan biosorbentni fizik-kimyoviy xossalari o‘rganildi. Biosorbentni Ni(II) ionini statik sharoitda suniy eritmadan yutish maksimal miqdori 245.8 mg/g ekanligi aniqlandi. Eritma konsentratsiyasi, sorbsiya davomiyligi va haroratning sorbsiya jarayoniga ta’siri o‘rganildi. Biosorbentning metall ionilarini yutgan miqdori, eritmalarning UV-spektrofotometrdagi dastlabki va sorbsiyadan kiyingi nur sindirish ko‘rsatgichlarini eritma kansentratsiyasiga bog‘liqlik grafigi asosida xisoblab topildi. Aniqlangan metall ionlarining sorbent tomonidan yutilish kinetikasini o‘rganib, sorbsiya jarayoni psevdo-birinchi tartibiliy (R2=0.8132) va psevdo-ikkinchi tartibiliy (R2=0.999) kinetik modellari aniqlandi. Bundan sorbsiya jarayoni psevdo-ikkinchi kinetik modelga bo‘ysunishi aniqlandi.
В данной статье представлена краткая информация об отходах биосорбентов и их источниках. Представлены условия модификации гумуса рисовой шелухи в водном растворе функциональными группами, аналогичными указанным биосорбентам, и удобными для модификации функциональными группами. Проведен элементный анализ состава образцов рисовой шелухи механической очистки, активированной рисовой шелухи и модифицированной рисовой шелухи. Изучены физико-химические свойства полученного биосорбента. Установлено, что максимальная величина поглощения биосорбентом ионов Ni(II) из искусственного раствора в статических условиях составляет 245,8 мг/г. Исследовано влияние концентрации раствора, продолжительности сорбции и температуры на процесс сорбции. Количество поглощенных биосорбентом ионов металлов рассчитывали на основании графика зависимости исходного и постсорбционного показателей преломления растворов от концентрации раствора в УФ-спектрофотометре. При изучении кинетики поглощения идентифицированных ионов металлов сорбентом процесс сорбции был псевдопервого порядка (R2=0,8132) и псевдовторого порядка (R2=0,999). Отсюда было определено, что процесс сорбции подчиняется псевдосекундной кинетической модели.
This article provides a summary of biosorbent wastes and their sources. The conditions for modifying rice husk humus in an aqueous solution with functional groups similar to the indicated biosorbents and functional groups convenient for modification are presented. Elemental analysis of the composition of samples of mechanically cleaned rice husks, activated rice husks and modified rice husks was carried out. The physicochemical properties of the obtained biosorbent were studied . It has been established that the maximum absorption of Ni (II) ions by the biosorbent from an artificial solution under static conditions is 245.8 mg/g. The effect of solution concentration, sorption duration, and temperature on the sorption process has been studied. The amount of metal ions absorbed by the biosorbent was calculated based on the plot of the dependence of the initial and postsorption refractive indices of solutions on the concentration of the solution in a UV spectrophotometer . When studying the kinetics of absorption of identified metal ions by the sorbent, the sorption process was psevdo -first order (R2=0.8132) and psevdo -second order (R2=0.999). Hence, it was determined that the sorption process obeys the psevdosecond kinetic model.
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Yarmanov S.X. | 1 | Khorezm Mamun Academy |
2 | Botirov S.X. | 2 | National University of Uzbekistan named after Mirzo Ulugbek |
3 | Bekchanov D.J. | 3 | National University of Uzbekistan named after Mirzo Ulugbek |
№ | Havola nomi |
---|---|
1 | 1. B. Singh, Garima Nagpal, Sonal Agrawal, Rachna.Water purification by using Adsorbents: A Review |
2 | 2. Sabino De Gisi, Giusy Lofrano, Mariangela Grassi, Michele Notarnicola a Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review |
3 | 3. Rengaraj, S., Yeon J.-W., Kim, Y., Yongju, J., Ha Y.-K., Kim W.-H: Adsorption characteristics of Cu(II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis, Journal of Hazardous Materials, 2007, 143(1–2), 469-477; |
4 | 4. Bogdan Bandrabur, Ramona-Elena Tataru-Fărmuş, Liliana Lazăr, Laura Bulgariu, Gheorghe Gutt. Use of strong acid resin Purolite C100E Forremoving permanent hardness of water – factors affecting cationic exchange capacity Scientific Study & Research. 2012, 13 (3), pp 295 – 304 |
5 | 5. Chajduk-Maleszewska, E., Dybczyński, R. Effective separation and preconcentration of trace amounts of Pd on Duolite ES 346 resin and its use for the determination of Pd by NAA, Analytical Chemistry, 2004; Vol. 49, pp. 281-297. |
6 | 6. P. Senthil Kumar, C. Vincent, K. Kirthika, and K. Sathish Kumar. Kinetics and equilibrium studies of Pb2+ ion removal from aqueous solutions by use of nano-silversol-coated activated carbon. Brazilian Journal of Chemical Engineering. 2010.Vol. 27, No. 02, pp. 339 - 346, |
7 | 7. Davron Bekchanov. Mukhtarjan Mukhamediev Gulbakhor Babojonova Peter Lieberzeit, Xintai Su. Eciently Removal Chromium (VI) Using Anion Exchanger on the base Polyvinylchloride: Isotherm, Kinetic and Thermodynamic Studies. |