200

Ушбу мақолада сомон целлюлозасидан кислотали гидролиз усули ёрдамида микрокристаллик целлюлоза ва наноцеллюлоза олиш тадқиқот натижалари ёритилган. Микрокристаллик целлюлоза ва наноцеллюлоза ўлчамлари, тузилиши ва хоссалари ёруғликнинг динамик сочилиши, инфрақизил спектроскопия, рентгеноструктуравий таҳлил, атом куч микроскопия, термик таҳлил каби усуллар билан тадқиқ қилинган. Микрокристаллик целлюлозанинг полимерланиш даражаси 232, кристалланиш даражаси 70 %, зарра ўлчамлари 70-400 мкм эканлиги, наноцеллюлозанинг полимерланиш даражаси 162, кристалланиш даражаси 79 %, зарра ўлчамлари 50-250 нм эканлиги аниқланган ва бу кўрсаткичларни гидролиз жараёнига таъсир қилувчи ўзгарувчан омиллар (кислота концентрацияси, ҳарорат, гидролиз давомийлиги) таъсирида назорат қилиш имкониятлари кўрсатилган.

  • O'qishlar soni37
  • Nashr sanasi21-07-2022
  • Asosiy tilO'zbek
  • Sahifalar5-16
Ўзбек

Ушбу мақолада сомон целлюлозасидан кислотали гидролиз усули ёрдамида микрокристаллик целлюлоза ва наноцеллюлоза олиш тадқиқот натижалари ёритилган. Микрокристаллик целлюлоза ва наноцеллюлоза ўлчамлари, тузилиши ва хоссалари ёруғликнинг динамик сочилиши, инфрақизил спектроскопия, рентгеноструктуравий таҳлил, атом куч микроскопия, термик таҳлил каби усуллар билан тадқиқ қилинган. Микрокристаллик целлюлозанинг полимерланиш даражаси 232, кристалланиш даражаси 70 %, зарра ўлчамлари 70-400 мкм эканлиги, наноцеллюлозанинг полимерланиш даражаси 162, кристалланиш даражаси 79 %, зарра ўлчамлари 50-250 нм эканлиги аниқланган ва бу кўрсаткичларни гидролиз жараёнига таъсир қилувчи ўзгарувчан омиллар (кислота концентрацияси, ҳарорат, гидролиз давомийлиги) таъсирида назорат қилиш имкониятлари кўрсатилган.

Русский

В данной работе путем кислотного гидролиза получены микрокристаллическая целлюлоза и наноцеллюлоза на основе соломенной целлюлозы. Исследованы размеры, структура и свойства микрокристаллической целлюлозы и наноцеллюлозы методами динамического рассеяния света, инфракрасной спектроскопии, рентгеноструктурного анализа, атомно-силовой микроскопии, термического анализа. Установлено, что для микрокристаллической целлюлозы степень полимеризации составляет 232, степень кристалличности – 70 %, размер частиц – 70-400 мкм, для наноцеллюлозы степень полимеризации составляет 162, степень кристалличности – 79 %, размер частиц – 50- 250 нм, а также показана возможность регулирования данных параметров переменными факторами, влияющими на процесс гидролиза.

English

This work was dedicated to generating the microcrystalline cellulose and nanocellulose based on straw cellulose using acid hydrolysis method. Dimensions, structure, and properties of the microcrystalline and nanocellulose have been investigated using dynamic light scattering, infrared spectroscopy, X-ray diffraction analysis, atomic force microscopy, and thermal analysis. It was found that for microcrystalline cellulose the degree of polymerization made 232, the degree of crystallinity is 70%, the particle size was 70-400 μm, whereas for nanocellulose the degree of polymerization – 162, the degree of crystallinity – 79%, the particle size was 50-250 nm, as well as the findings showed that these parameters could be controlled by variables factors than can affect hydrolysis processes.

Havola nomi
1 Nazir M.S., Wahjoedi B.A., Yussof A.W., Abdullah M.A. Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. BioResource, 2013, no. 8, pp. 2161- 2172. DOI: 10.15376/biores.8.2.2161-2172/.
2 Tarchoun A.F., Trache D., Klapötke T.M., Derradji M., Bessa W. Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media. Cellulose, 2019, no. 26, pp. 7635-7651.
3 Kian L.K., Saba N., Jawaid M., Fouad H. Characterization of microcrystalline cellulose extracted from olive fiber. Int. J. Biol. Macromol., 2020, vol. 156, pp. 347-353.
4 Hou W., Ling C., Shi S., Yan Z. Preparation and characterization of microcrystalline cellulose from waste cotton fabrics by using phosphotungstic acid. Int. J. Biol. Macromol., 2019, vol. 123, pp. 363-368.
5 Kimito M. Preparation of cellulose powder having particular shape. Patent 57212231. Japan, МКI C08J3/12, C08J3/12. Asahi Chemical Ind., no. 19810624. 24.06.1981. Publ. 27.12.1982, 6 p.
6 Saribayeva R.I. Reaksii sellyulozi v prisutstvii kislot Lyuisa [Cellulose reactions in the presence of Lewis acids]. Reaction of destruction. Izvestia of the Academy of Sciences of the KirgSSR, 1979, no. 2, p. 42.
7 Shеbolkina I.P., Kochеva L.S. Svoystva i primеnеniе mikrokristallichеskoy sеllyulozi [Properties and Applications of Microcrystalline Cellulose]. Proceedings of the Conference. Syktyvkar, 2012, pp. 591-597.
8 Yavorov N., Valchev I., Radeva G., Todorova D. Kinetic investigation of dilute acid hydrolysis of hardwood pulp for microcrystalline cellulose production. Carbohydr. Res., 2020, vol. 488, p. 107910.
9 Zhao T., Chen Z., Lin X., Ren Z., Li B., Zhang Y. Preparation and characterization of microcrystalline cellulose (MCC) from tea waste. Carbohydr. Polym., 2018, vol. 84, pp. 164-170.
10 Knaus S, Bauer-Heim B Synthesis and properties of anionic cellulose ethers: influence of functional groups and molecular weight on flowability of concrete. Carbohydr Polym., 2003, no. 53 (4), pp. 383-394. DOI: 10.1016/S0144-8617(03)00106-1/.
11 Okahisa Y., Yoshida A., Miyaguchi S., Yano H. Optically transparent wood-cellulose nanocomposite as a base substrate for flexible organic light-emitting diode displays. Compos Sci Technol, 2009, no. 69 (11–12), pp. 1958-1961. DOI: 10.1016/j.compscitech.2009.04.017/.
12 Wang R., Lui S. Nanokristalline cellulose prepared from softwood fraft pulp via ultrasonic-assisted acid hydrolysis. BioResources, 2011, no. 6, pp. 4271-4281. DOI: 10.15376/ biores.6.4.4271-4281/.
13 Wang Y., Wei Li.J., Wang, F.Q. and Kong, L. Homogeneous isolation of nanosellulose by high pressure homogenization. Journal of Material Science and Chemical Enginerering, 2013, pp. 49-52. DOI: 10.1007/s12221-015-0572-1/.
14 Mayra M., Lucimara L., Nelson D., Ljubica T. Settings enhanced materials from nature: nanocellulose from citrus waste. Molecules, 2015, no. 20 (4), pp. 5908-5923. DOI: 10.3390/ molecules20045908/.
15 Janardhnan S., Sain M.M. Targeted Disruption of hydroxyl chemistry and crystallinity in natural fibers for the isolation of cellulose nano-fibers via enzymatic treatment. BioResources, 2011, no. 6, pp. 1242-1250.
16 Wang N.D., Chеng R. Thеrmal dеgradation bеhaviors of sphеrical cеllulosе nanocrystals with sulfatе groups. Polymеr.
17 Wang M.S. Surface modification and characterization of nano crystalline cellulose. M. Sc. Sci. Thesis, Chalmers University of Technology, Goteborg, 2011.
18 Moon R.J., Martini A., Nairn J., Simonsenf J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chemical Society Reviews, 2011, no. 40, pp. 3941-3994. DOI: 10.1039/ c0cs00108b/.
19 Yu M., Yang R., Huang L., Cao X., Yang F., Liu D. Preparation and characterization of bamboo nanocrystalline cellulose. Bioresources, 2012, no. 7, pp. 1802-1812. DOI: 10.15376/biores/.
20 Elazzouzi-Hafraoui S., Nishiyama Y., Putaux J.-L., Heux L., Dubreuil F., Rochas C. The shape and size distribution of crystalline nanoparticles prepared by acid hydrolysis of native cellulose. Biomacromolecules, 2008, no. 9, pp. 57-65. DOI: 10.1021/bm700769p/.
21 Zaini L.H., Jonoobi M., Tahir P.M., Karimi S. Isolation and characterization of cellulose whiskers from kenaf bast fibers. Journal of Biomaterials and Nanotechnology, 2013, no. 4, pp. 37-44. DOI: 10.4236/jbnb.2013.41006/.
22 Yuldoshov Sh.A., Atakhanov A.A., Sarymsakov A.A., Rashidova S.Sh. Investigation of reaction activity of cellulose and its products of acid hydrolysis. macromolecules. Indian Journal, 2015, no. 11, pp. 51-57. DOI: 10.4236/ojpchem.2019.94010/.
23 Dufresne A. Nanocellulose: potential reinforcement in composites. Nat. Polym., vol. 2, Nanocompos., 2012, no. 2, pp. 1-32.
24 Abdul Khalil H.P.S., Bhat A.H., Ireana Yusra A.F. Green composites from sustainable cellulose nanofibrils: a review. Carbohydr. Polym., 2012, vol. 87, pp. 963-979.
25 Abitbol T., Rivkin A., Cao Y., Nevo Y., Abraham E., Ben-Shalom T., Lapidot S., Shoseyov O. Nanocellulose, a tiny fiber with huge applications. Curr Opin Biotechnol, 2016, vol. 39, pp. 76-88.
26 Ataxanov A.A. Paxta-mikrokristallik va nanosеllyulozaning olinishi, tuzilishi, xossalari va ishlab chiqarish tеxnologiyasi [Preparation, structure, properties and production technology of cotton-microcrystalline and nanocellulose]. Abstract of Doctor’s degree dissertation, 2016, 50 p.
27 Jorfi M., Johan F.E. Recent advances in nanocellulose for biomedical applications. Appl. Polym. Sci., 2015, vol. 132, pp. 1-19.
28 Lin N., Dufresne A. Nanocellulose in biomedicine: current status and future prospect. Eur. Polym. J., 2014, vol. 59, pp. 302-325.
29 Guise C., Fangueiro R. Biomedical applications of nanocellulose. Nat. Fibres: Adv. Sci. Technol. Towards Ind. Appl., 2016, no. 12, pp. 155-169.
30 Kaushik M., Moores A. Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem., 2016, no. 18, pp. 622-637.
31 Gebald C., Wurzbacher J., Tingaut P., Zimmermann T., Steinfeld A. Aminebased nanofibrillated cellulose as adsorbent for CO2 capture from air. Environ. Sci. Technol., 2001, vol. 45, pp. 9101-9108.
32 Li Q., Wei B., Xue Y., Wen Y., Li J. Improving the physical properties of nanocellulose through chemical grafting for potential use in enhancing oil recovery. J. Bioresour. Bioprod., 2016, no. 1, pp. 186-191.
33 Kontturi E., Johansson L., Kontturi K.S., Ahonen P., Thune P.C., Laine J. Cellulose nanocrystal submonolayers by spin coating. Langmuir, 2007, no. 23 (19), pp. 9674-9680. DOI: 10.1021/ la701262x/.
34 Li J., Wei X., Wang Q., Chen J., Chang G., Kong L., Su J., Liu Y. Homogeneous isolation of nanocellulose from sugarcane bagasse by high pressure homogenization. Carbohydr. Polym., 2012, vol. 90, pp. 1609-1613.
35 Mandal A., Chakrabarty D., Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym., 2011, vol. 86, pp. 1291-1299.
36 Teixeira M., Bondancia T.J., Teodoro K.B.R., Correa A.C., Marconcini J.M., Mattoso L.H. Sugarcane bagasse whiskers: extraction and characterizations. Indus. Crop. Prod., 2011, vol. 33, pp. 63-66.
37 Bhattacharya D., Germinario L.T., Winter W.T. Isolation, preparation and characterization of cellulose microfibers obtained from bagasse. Carbohydr. Polym., 2008, vol. 73, pp. 371-377.
38 Kumar A., Negi Y.S., Bhardwaj N.K., Choudhary V. Synthesis and characterization of cellulose nanocrystals / PVA based bionanocomposite. Adv. Mater. Lett., 2013, no. 4, pp. 626-631.
39 Kong W., Plant T., Simonsen J., Evans G. Cellulose nanocrystal electro-optic devices. Journal of Applied Physics, 2006, vol. 97, Article ID: 053101.
40 Nystrоm G., Razaq A., Strоmme M., Nyholm L., Mihranyan A. Ultrafast all-polymer paper-based batteries. Nano Lett., 2009, no. 9, pp. 3635-3639. DOI: 10.1021/nl901852h/.
41 Monschein M., Reisinger C., Nidetzky B. Enzymatic hydrolysis of microcrystalline cellulose and pretreated wheat straw: A detailed comparison using convenient kinetic analysis. Bioresource Technology, 2013, vol. 128, pp. 679-687.
42 Shlieout G., Arnold K., Muller G. Powder and mechanical properties of microcrystalline cellulose with different degrees of polymerization. AAPS PharmSciTech., 2002, no. 3, E11.
43 Thoorens G., Krier F., Leclercq B., Carlin B., Evrard B. Microcrystalline cellulose, a direct compression binder in a quality by design environment: A review. International Journal of Pharmaceutics, 2014, vol. 473 (1-2), pp. 64-72.
44 Atakhanov A.A., Turdikulov I.H., Mamadiyorov B.N., Abdullaeva N., Nurgaliev I., Yunusov H.E., Rashidova S.R. Isolation of nanocellulose from cotton cellulose and computer modeling of its structure open. Journal of polymer chemistry, 2019, no. 9, pp. 117-129. Available at: https://www.scirp.org/ journal/ojpchem/.
45 Barbash V.A., Yaschenko O.V., Shniruk O.M. Preparation and properties of nanocellulose from organosolv straw pulp barbash et al. Nanoscale Research Letters, 2017, no. 12, p. 241. DOI: 10.1186/ s11671-017-2001-4/.
46 Garcia de Rodriguez N.L., Thielemans W., Dufresne A. Sisal cellulose whiskers reinforced polyvinyl acetate nanocomposites. Cellulose, 2006, vol. 13, no. 3, pp. 261-270.
47 Ahmed F.A. Extraction and characterization of nanocellulose obtained from sugarcane bagasse as agro-waste. Journal of Advanced Chemistry, 2017, vol. 12, no. 3, pp. 1-10.
48 Zimmermann M.V., Borsoi C., Lavoratti A., Zanini M., Zattera A.J., Santana R.M. Drying techniques applied to cellulose nanofibers. J. Reinf. Plast. Compos., 2016, vol. 35, pp. 628-643.
49 Karimi S., Tahira P.Md., Karimia A., Dufresnec A., Abdulkhani A. Kenaf bast cellulosic fibers hierarchy: a comprehensive approach from micro to nano. Carbohydr. Polym., 2014, vol. 101, pp. 878- 885.
Kutilmoqda