183

Maqolada sprinkler sug‘orish tizimi samaradorligini baholash va ishonchli loyihalash uchun ayrim dala tadqiqotlarini bajarish usullari yoritilgan. Shuningdek, sug‘orish tizimida suv sarfining hudud bo‘ylab taqsimlanishi va undagi yo‘qotishlar tahlil qilinadi. Sprinklerning suv taqsimotini baholashda Kristiansenning Cu o‘xshashlik koeffitsiyentidan foydalanildi. Catch Can usuli uch turdagi kombinatsiya: sprinkler balandligi, sprinklerdan chiqayotgan suv sarfi va napor o‘zgarishini o‘rganish orqali amalga oshirildi. Kristiansen koeffitsiyenti bir necha xil naporda sprinkler balandligiga ko‘ra sarfning taqsimlanishini hisobga olishdagi tajribalar yig‘indisi asosida aniqlandi. Tadqiqotlar Farg‘ona viloyatining O‘zbekiston tumani “XXI asr xirmoni” fermer xo‘jaligida olib borildi. Yuqorida keltirilgan usul asosida suv taqsimotini baholashda eng maqbul balandlik aniqlandi. Dala tajribalari hamda ularning tahlili asosida suv sarfi bo‘yicha sprinkler balandligi va oqim taqsimoti asosida grafik tuzildi.

  • O'qishlar soni 87
  • Nashr sanasi 11-11-2022
  • Asosiy tilO'zbek
  • Sahifalar26-33
Ўзбек

Maqolada sprinkler sug‘orish tizimi samaradorligini baholash va ishonchli loyihalash uchun ayrim dala tadqiqotlarini bajarish usullari yoritilgan. Shuningdek, sug‘orish tizimida suv sarfining hudud bo‘ylab taqsimlanishi va undagi yo‘qotishlar tahlil qilinadi. Sprinklerning suv taqsimotini baholashda Kristiansenning Cu o‘xshashlik koeffitsiyentidan foydalanildi. Catch Can usuli uch turdagi kombinatsiya: sprinkler balandligi, sprinklerdan chiqayotgan suv sarfi va napor o‘zgarishini o‘rganish orqali amalga oshirildi. Kristiansen koeffitsiyenti bir necha xil naporda sprinkler balandligiga ko‘ra sarfning taqsimlanishini hisobga olishdagi tajribalar yig‘indisi asosida aniqlandi. Tadqiqotlar Farg‘ona viloyatining O‘zbekiston tumani “XXI asr xirmoni” fermer xo‘jaligida olib borildi. Yuqorida keltirilgan usul asosida suv taqsimotini baholashda eng maqbul balandlik aniqlandi. Dala tajribalari hamda ularning tahlili asosida suv sarfi bo‘yicha sprinkler balandligi va oqim taqsimoti asosida grafik tuzildi.

Русский

В статье описаны методы проведения некоторых полевых исследований для оценки эффективности систем орошения дождеванием и их надежного проектирования. Также анализируется распределение водопотребления по территории оросительной системы и ее потери. Коэффициент распределения Кристиансена Cu используется для оценки распределения воды спринклера. Он расчитывался путем изучения трех типов комбинаций по методу Catch Can, т. е. высоты оросителя, расхода воды оросителя и изменения давления. Для определения коэффициента Кристиансена его рассчитывают по сумме опытов с учетом распределения расхода по высоте оросителя при нескольких различных значениях давления. Исследования проводились в фермерском хозяйстве «XXI asr xirmoni» Узбекского района Ферганской области. На основе приведенного метода была определена оптимальная высота при оценке водораспределения. На основе полевых экспериментов и их анализа был построен график, основанный на высоте оросителя и распределении расхода воды.

English

The article describes the methods of some field studies to assess the efficiency of sprinkler irrigation systems and their reliable design. The distribution of water consumption over the irrigation system area and its losses are also analyzed. The Christiansen distribution coefficient Cu is used to estimate sprinkler water distribution. It was calculated by examining three types of combinations using the Catch Can method, that is, sprinkler height, sprinkler water flow, and pressure variation. To determine the Christiansen factor, it is calculated from the sum of the experiments, taking into account the distribution of flow over the height of the fill at several different pressures. The research was conducted on the farm “XXI asr xirmoni” of the Uzbek district of Fergana region. Based on the given method, the optimum height was determined when estimating the water distribution. Based on the field experiments and their analysis, a graph based on the irrigator height and flow distribution was plotted.

Havola nomi
1 Keller J., Bliesner R.D. Sprinkler and trickle irrigation. An Avi Book Van Nostrand Reinhold Pun, New York, 2015, p. 651.
2 Karney B.W., Podmore T.H. Performance of stationary gun irrigation systems. Journal of irrigation and Drainage engineering, 2015, pp. 75–87.
3 Huang Y., Zhao H., Jiang Y. et al. Comparison and analysis of different discrete methods and entropy-based methods in rain gauge network design. Water Switzerland, 2019.
4 Sourell H., Faci J.M. Performance of rotating spray plate sprinklers in Indoor experiments. Journal of irrigation and Drainage engineering, 2013, October.
5 Sulaymon S.K.H. Irrigation systems and water application efficiencies. Centre for Irrigation Technology, Irrigation Notes, 2018.
6 Shearer M.N. Uniformity of water distribution from sprinklers as it is related to the application of agricultural chemicals. Water Storage Efficiency, Sprinkler System Capacity, and Power Requirements, 2019.
7 Winward T., Hill R. Catch-can performance under a line-source sprinkler Transactions of the ASABE. 2017, no. 50 (4), pp. 1167–1175.
8 Keller J, Bliesner R.B. Sprinkler and Trickle Irrigation. Chapman & Hall, New York, 2010, p. 625.
9 Natural Resources Conservation Service (NRCS). 2013. National Engineering Handbook. Sprinkle Irrigation, section 15, chapter 11.
10 Susanawati L.D, Suharto B. Design and construction of sprinkler irrigation for stabilizing apple crop in dry season. 2014.
11 Merriam J.L., Keller J. Farm irrigation system evaluation: a guide for management. Department of Agricultural and Irrigation Engineering, Utah State University, Logan, 2013.
12 Jurík Ľ., Zeleňáková M., Kaletová T., Arifjanov A. Small water reservoirs: sources of water for irrigation. The handbook of environmental Chemistry, Nitra, 2019, vol. 69, pр. 115–131.
13 Brandt M.J., Johnson K.M., Elphinston A.J., Ratnayaka D.D. Hydraulics twort’s water supply. Elsevier, 2017, pp. 581–619.
14 Maroufpoor E., Faryabi A., Ghamarnia H., Moshrefi G.Y. Evaluation of uniformity coefficients for sprinkler irrigation systems under different field conditions in Kurdistan province, 2014.
15 Fatkhulloyev A., Gafarova A., Hamrokulov J. Improvement of water accounting for irrigation systems. Proceedings of the IOP Conference, Series: Science and Engineering, 2021, vol. 1030, p. 012145. DOI: 10.1088/1757-899X/1030/1/012145/.
16 Christiansen J.E. Irrigation by sprinkling. California Agricultural Experiment Station Bulletin, Berkeley, 2013, no. 670.
17 Vakhidova U.A., Ibragimova Z.I., Apakhodzhaeva T.U. Estimation of the temperature and humidity kinetics during the passage of vaporous moisture through textile materials. Proceedings of the IOP Conference Series: Earth and Environmental Science, 2020, vol. 614 (1). DOI: 10.1088/1755- 1315/614/1/012024/.
18 Darko R.O., Yuan S., Hong L., Lui J., Yan H. Irrigation, a productive tool for food security – a review. Acta Agriculturae Scandinavica, Section B- Soil & Plant Science, 2016, vol. 66 (3), pp. 191–206.
19 Abduraimova D., Atakulov D., Ibragimova Z., Apakhodzhaeva T. Evaluation of erosion and accumulative process with using Geoinformation systems in water resource management. Proceedings of the International Conference on Information Science and Communications Technologies: Applications, Trends and Opportunities, ICISCT, 2019. DOI: 10.1109/ICISCT47635.2019.9012020/.
Kutilmoqda