171

Qalin qatlamli rezistorlardan ishlab chiqarilgan tenzodatchik nisbatan yuqori kuchlanish sezuvchanligi, barqarorligi, ishlab chiqarish tannarxi pastligi va uzoq muddatli xizmati tufayli qurilish muhandisligida foydalanish uchun katta imkoniyatlarga ega. Shunga qaramay, tenzodatchiklarning doimiy kamchiliklari ularning termal sezgirligidir. Ushbu muammoni hal qilish uchun past haroratni sezmaydigan qalin qatlamli rezistorlardan tayyorlangan tenzodatchik taklif qilinishi va ishlab chiqarilishi maqsadga muvofiq. Mazkur maqolada rezistorli pasta komponentlari va pishirish haroratining qalin qatlamli rezistorning qarshilik harorat koeffitsiyentiga (TCR) ta’siri tizimli ravishda o‘rganildi. Al2O3 tagligida turli xil haroratlarda pishirilgan RuO2 konsentratsiyasidan 10 wt % dan 30 wt % gacha tayyorlangan qalin qatlamli rezistorlar tekshirildi. Rezistorlar qarshiligi, TCR va o‘lchov omili (GF)
o‘rtasidagi munosabatlar o‘rganildi. Natijalar shuni ko‘rsatdiki, RuO2 konsentratsiyasi va pishirish harorati ortishi bilan TCR ham ortadi. Qarshilik-harorat egri chizig‘ining minimal (Tmin) yaqinida harorat qarshilik qiymatiga eng kam ta’sir qiladi va qalin qatlamli rezistor ma’lum bir diapazonda haroratga sezgir emas deb hisoblash mumkin. TCRning GF va Tminga nisbati qalin qatlamli rezistorlarning qatlam qarshiligiga bog‘liq. Supero‘tkazuvchilar faza konsentratsiyasi va pishirish haroratini o‘zgartirishi orqali qalin qatlamli rezistorlarning qatlam qarshiligini nazorat qilish mumkin. So‘ngra turli xil muhit haroratlari uchun past haroratlarni sezmaydigan tenzodatchiklar olishga erishiladi.

  • O'qishlar soni 60
  • Nashr sanasi 14-04-2023
  • Asosiy tilO'zbek
  • Sahifalar6-12
Ўзбек

Qalin qatlamli rezistorlardan ishlab chiqarilgan tenzodatchik nisbatan yuqori kuchlanish sezuvchanligi, barqarorligi, ishlab chiqarish tannarxi pastligi va uzoq muddatli xizmati tufayli qurilish muhandisligida foydalanish uchun katta imkoniyatlarga ega. Shunga qaramay, tenzodatchiklarning doimiy kamchiliklari ularning termal sezgirligidir. Ushbu muammoni hal qilish uchun past haroratni sezmaydigan qalin qatlamli rezistorlardan tayyorlangan tenzodatchik taklif qilinishi va ishlab chiqarilishi maqsadga muvofiq. Mazkur maqolada rezistorli pasta komponentlari va pishirish haroratining qalin qatlamli rezistorning qarshilik harorat koeffitsiyentiga (TCR) ta’siri tizimli ravishda o‘rganildi. Al2O3 tagligida turli xil haroratlarda pishirilgan RuO2 konsentratsiyasidan 10 wt % dan 30 wt % gacha tayyorlangan qalin qatlamli rezistorlar tekshirildi. Rezistorlar qarshiligi, TCR va o‘lchov omili (GF)
o‘rtasidagi munosabatlar o‘rganildi. Natijalar shuni ko‘rsatdiki, RuO2 konsentratsiyasi va pishirish harorati ortishi bilan TCR ham ortadi. Qarshilik-harorat egri chizig‘ining minimal (Tmin) yaqinida harorat qarshilik qiymatiga eng kam ta’sir qiladi va qalin qatlamli rezistor ma’lum bir diapazonda haroratga sezgir emas deb hisoblash mumkin. TCRning GF va Tminga nisbati qalin qatlamli rezistorlarning qatlam qarshiligiga bog‘liq. Supero‘tkazuvchilar faza konsentratsiyasi va pishirish haroratini o‘zgartirishi orqali qalin qatlamli rezistorlarning qatlam qarshiligini nazorat qilish mumkin. So‘ngra turli xil muhit haroratlari uchun past haroratlarni sezmaydigan tenzodatchiklar olishga erishiladi.

Русский

Тензодатчик с толстослойными резисторами имеет большой потенциал для применения в гражданском строительстве благодаря относительно высокой чувствительности к напряжению, стабильности, низкой себестоимости и длительному сроку службы. Тем не менее постоянным недостатком тензодатчиков является их термочувствительность. Для решения этой проблемы желательно предложить и изготовить тензорезистор с толстослойными резисторами, не чувствительными к низким температурам. В этой статье систематически исследовано влияние компонентов резисторной пасты и температуры обжига на температурный коэффициент сопротивления (TCR) толстослойного резистора. Исследованы толстослойные резисторы, изготовленные из RuO2 концентраций от 10 до 30 % по массе, прокаленных при различных температурах, на подложке из Al2O3. Исследована взаимосвязь между сопротивлением резистора, TCR и масштабным коэффициентом (GF). Результаты показывают, что TCR также увеличивается с увеличением концентрации RuO2 и температуры обжига. Вблизи минимума (Tmin) кривой сопротивление – температура температура оказывает наименьшее влияние на значение сопротивления, и толстослойный резистор можно считать нечувствительным к температуре в определенном диапазоне. Отношение TCR к GF и Tmin зависит от сопротивления слоя толстослойных резисторов. Изменяя концентрацию проводящей фазы и температуру обжига, можно контролировать сопротивление слоя толстослойных резисторов и получать низко-температурные тензорезисторы для различных температур окружающей среды.

English

A strain gauge made of thick-film resistors has a great potential for use in civil engineering owing to its relatively high voltage sensitivity, stability, low production cost, and long-term service capacities. However, a persistent drawback of strain gauges is their thermal sensitivity. To address this problem, it is advisable to propose and manufacture a strain gauge made of thick film resistors that do not sense low temperatures. This paper makes a close look into the effects of resistor paste components and baking temperature on the temperature coefficient of resistance (TCR) of a thick-film resistor. Thick film resistors made from RuO2 concentrations from 10 wt% to 30 wt% baked at different temperatures on an Al2O3 substrate,  have been investigated. The relationship between resistor resistance, TCR and scale factor (GF) has been subject for studies. Findings show that TCR rises with an increase of the RuO2 concentration and baking temperature. Near the minimum (Tmin) of the resistance-temperature curve, the temperature has the least effect on the resistance value, and a thick-film resistor can be considered insensitive to temperature in a certain range. The ratio of TCR to GF and Tmin depends on the film resistance of thick film resistors. By varying the concentration of the conductive phase and the baking temperature, the film resistance of thick-film resistors can be controlled, and low-temperature strain gauges can be achieved for different ambient temperatures.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Tursunov M.E. Fizika fakulteti tayanch doktoranti Mirzo Ulug‘bek nomidagi O‘zbekiston Milliy universiteti
2 Dehqonov A.T. Fizika fakulteti tayanch doktoranti Mirzo Ulug‘bek nomidagi O‘zbekiston Milliy universiteti
3 Sharipov J.F. Fizika fakulteti stajyor tadqiqotchisi Mirzo Ulug‘bek nomidagi O‘zbekiston Milliy universiteti
Havola nomi
1 Adachi, K., & Kuno, H. (2000). Effect of glass composition on the electrical properties of thick-film resistors. Journal of the American Ceramic Society, 83(10), pp. 2441-2448.
2 Bhatia, V., Campbell, D., Sherr, D., D’Alberto, T., Zabaronick, N., Eyck, G., Claus, R. (1997). Temperature-insensitive and strain-insensitive long-period grating sensors for smart structures. Optical Engineering, 36(7), pp. 1872-1876.
3 Cattaneo, A., Cocito, M., Forlani, F., & Prudenziati, M. (1977). Influence of the metal migration from screen-and-fired terminations on the electrical characteristics of thick-film resistors. Electro Component Science and Technology, 4(3-4), pp. 205-211.
4 Dong, X., Yang, X., Zhao, C.-L., Ding, L., Shum, P., & Ngo, N. (2005). A novel temperature-insensitive fiber Bragg grating sensor for displacement measurement. Smart Materials and Structures, 14(2), pp. 7-10.
5 Guan, X., Wen, M., Li, H., & Ou, J. (2017). Strain sensor made by thick-film resistors on substrates of glass ceramic. Proccedings of the 11th IWSHM 2017 : Real-Time Material State Awareness and Data Driven Safety Assurance. 2, pp. 1961-1968. Stanford, CA, United States: DEStech Publications.
6 Hrovat, M., Bencan, A., Belavic, D., Holc, J., & Drazic, G. (2003). The influence of firing temperature on the electrical and microstructural characteristics of thick-film resistors for strain gauge applications. Sensors and Actuators, 103, pp. 341-352. doi:10.1016/S0924-4247(02)00402-8
7 Jabir, S., & Gupta, N. (2013). Condition monitoring of the strength and stability of civil structures using thick film ceramic sensors. Measurement, 7, pp. 2223-2231.
8 Joon, L., & Vest, R. (1983). Firing studies with a model thick film resistor system. Transactions on Components, Hybrids and Manufacturing Technology, 6(4), pp. 430-435.
9 Liu, N., & Ou, J. (2004). Techniques of temperature compensation for FBG strain sensors used in long-term structural monitoring. Proceedings of SPIE - The International Society for Optical Engineering, 5851, pp. 13-16465. doi:10.1117/12.634047
10 Mott, N. (1968). Conduction in glasses containing transition metal ions. Journal of Non-Crystalline Solids, 1(1), pp. 1-17.
11 Pike, G., & Seager, C. (1977). Electrical properties and conduction mechanisms of Ru-based thick- film (cermet) resistors. Journal of Applied Physics, 48(12), pp. 5152-5169.
12 Scarisbrick, R. (1973). Electrically conducting mixtures. Journal of Physics, 6(17), p. 2098.
13 Shah, J. (1980). Strain sensivity of thick-film resistors;. Transactions on Components, Hybrids and Manufacturing Technology, 3(4), pp. 554-564.
14 Song, M., Lee, B., Lee, S., & Choi, S. (1997). Interferometric temperature-insensitive strain measurement with different-diameter fiber Bragg gratings. Opt. Lett., 22(11), pp. 790-792.
15 Sundararaman, V., Rathod, V., & Mahapatra, D. (2015). Temperature compensation in CNT-composite distributed strain sensors. Proccedings of the SPIE: Smart Structures and Materials Nondestructive Evaluation and Health Monitoring. 9436, p. 7. SPIE.
16 Tian, H., Liu, H.-t., & Cheng, H.-f. (2015). Microstructural and electrical properties of thick film resistors on oxide/oxide ceramic–matrix composites. Ceramics International, 41(2), pp. 3214-3219.
17 Zheng, Y., Atkinson, J., Sion, R., & Zhang, Z. (2002). A study of some production parameter effects on the resistancetemperature characteristics of thick film strain gauges. Phys D Appl Phys, 35(11), pp. 1282-1289.
Kutilmoqda