Hozirgi kunda yer yuzi aholisi iqlim oʻzgarishlari ta’siridan aziyat chekmoqda. Iqlim oʻzgarishlarining asosiy sabablaridan biri – bu issiqxona gazlari, xususan, karbonat angidridning atmosferadagi konsentratsiyasi oshib ketishidir. Antropogen ta’sirlar tufayli karbonat angidridning atmosferadagi konsentratsiyasi sanoat inqilobi boshlangandan buyon qariyb 1,5 barobar ortgan. Sement ishlab chiqarish jarayoni ham CO2 emissiyasining asosiy manbalaridan biri hisoblanib, global miqyosda yiliga 2,3 Gt CO2 ni atmosferaga emissiya qilmoqda. Ushbu ishda sement ishlab chiqarish sanoatida tutun gazlaridan CO2 ni ajratish jarayoni tahlil qilindi. Dastlab yiliga 1 Mt sement ishlab chiqarish zavodi Aspen Plus dasturida modellashtirildi. Keyingi bosqichda esa sement zavodi tutun gazlari tarkibidagi CO2 ni kamaytirishga qaratilgan usullardan membrana vositasida ushlab qolish texnologiyasi modeli tuzildi. Ushbu model asosida 90 %dan kam boʻlmagan ushlab qolish samaradorligi hamda 95 %dan kam boʻlmagan CO2 tozaligi shartlari uchun zarur membrana yuzasi va bosimlar farqi qiymatlari aniqlandi.
Hozirgi kunda yer yuzi aholisi iqlim oʻzgarishlari ta’siridan aziyat chekmoqda. Iqlim oʻzgarishlarining asosiy sabablaridan biri – bu issiqxona gazlari, xususan, karbonat angidridning atmosferadagi konsentratsiyasi oshib ketishidir. Antropogen ta’sirlar tufayli karbonat angidridning atmosferadagi konsentratsiyasi sanoat inqilobi boshlangandan buyon qariyb 1,5 barobar ortgan. Sement ishlab chiqarish jarayoni ham CO2 emissiyasining asosiy manbalaridan biri hisoblanib, global miqyosda yiliga 2,3 Gt CO2 ni atmosferaga emissiya qilmoqda. Ushbu ishda sement ishlab chiqarish sanoatida tutun gazlaridan CO2 ni ajratish jarayoni tahlil qilindi. Dastlab yiliga 1 Mt sement ishlab chiqarish zavodi Aspen Plus dasturida modellashtirildi. Keyingi bosqichda esa sement zavodi tutun gazlari tarkibidagi CO2 ni kamaytirishga qaratilgan usullardan membrana vositasida ushlab qolish texnologiyasi modeli tuzildi. Ushbu model asosida 90 %dan kam boʻlmagan ushlab qolish samaradorligi hamda 95 %dan kam boʻlmagan CO2 tozaligi shartlari uchun zarur membrana yuzasi va bosimlar farqi qiymatlari aniqlandi.
В настоящее время население Земли страдает от последствий изменения климата. Одной из основных причин изменения климата является увеличение концентрации в атмосфере парниковых газов, в частности CO2 . Из-за антропогенного воздействия концентрация СО2 в атмосфере с начала индустриальной революции увеличилась почти в 1,5 раза. Процесс производства цемента также считается одним из основных источников выбросов CO2 : во всём мире в атмосферу выбрасывается 2,3 Гт CO2 в год. В данной работе был проанализирован процесс сепарации CO2 из дымовых газов цементной промышленности. Первоначально в программном обеспечении Aspen Plus был смоделирован завод по производству цемента мощностью 1 млн т в год. На следующем этапе была построена модель технологии мембранной сепарации, состоящая из способов снижения CO2 в дымовых газах цементного завода. На основе разработанной модели определены необходимая площадь мембраны и значения перепада давления для условий эффективности улавливания СО2 не менее чем 90 % и его чистоты не менее чем 95 %.
Currently, the population of the Earth is suffering from problems caused by climate change. One of the main reasons for climate change is the increased concentration of greenhouse gases, in particular carbon dioxide (CO2 ), in the atmosphere. Owing to anthropogenic effects, the CO2 concentration in the atmosphere has increased by almost 1.5 times since the pre-industrial revolution. The cement production process is also considered one of the main sources of CO2 emissions, globally emitting 2.3 Gt of CO2 per year into the atmosphere. This study looks into the process of CO2 capture from flue gases in the cement plant. Initially, a cement plant with a 1 Mt/year capacity was modeled in Aspen Plus software. At the next stage, a model of membrane-based CO2 capture was built in order to reduce CO2 emissions in cement plants. According to the developed model, the required membrane surface and pressure drop values have been determined for the constraints of capture efficiency as at least 90% and CO2 purity as not less than 95%.
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Toʻraqulov Z.S. | tayanch doktorant | Toshkent kimyo-texnologiya instituti |
№ | Havola nomi |
---|---|
1 | Artikov, A., Narziev, M., & Musaeva, N. (2022). System thinking in the analysis of the juice evaporation plant in the food industry. IOP Conference Series: Earth and Environmental Science, 1112(1), 012095. doi:10.1088/1755-1315/1112/1/012095 |
2 | Atlaskin, A.A., Petukhov, A.N., Stepakova, A.N., Tsivkovsky, N.S., Kryuchkov, S.S., Smorodin, K.A., Moiseenko, I.S., Atlaskina, M.E., Suvorov, S.S., Stepanova, E.A., & Vorotyntsev, I.V. (2023). Membrane Cascade Type of «Continuous Membrane Column» for Power Plant Post-Combustion Carbon Dioxide Capture. Part 1: Simulation of the Binary Gas Mixture Separation. Membranes, 13(3), 270. doi:10.3390/membranes13030270 |
3 | Bains, P., Psarras, P., & Wilcox, J. (2017). CO2 capture from the industry sector. Progress in Energy and Combustion Science, 63, 146-172. doi:10.1016/j.pecs.2017.07.001 |
4 | Bocciardo, D., Ferrari, M.-C., & Brandani, S. (2013). Modelling and Multi-stage Design of Membrane Processes Applied to Carbon Capture in Coal-fired Power Plants. Energy Procedia, 37, 932–940. doi:10.1016/j.egypro.2013.05.188 |
5 | Chen, G., Wang, T., Zhang, G., Liu, G., & Jin, W. (2022). Membrane materials targeting carbon capture and utilization. Advanced Membranes, 2, 100025. doi:10.1016/j.advmem.2022.100025 |
6 | Erişen, S. (2023). A Systematic Approach to Optimizing Energy-Efficient Automated Systems with Learning Models for Thermal Comfort Control in Indoor Spaces. Buildings, 13(7), 1824. doi:10.3390/buildings13071824 |
7 | Eshbobaev, J., Norkobilov, A., Turakulov, Z., Khamidov, B., & Kodirov, O. (2023). Field Trial of Solar-Powered Ion-Exchange Resin for the Industrial Wastewater Treatment Process. ECP 2023, 47. doi:10.3390/ECP2023-14626 |
8 | Eviani, M., Devianto, H., Widiatmoko, P., Sukmana, I. F., Fitri, H. R., & Yusupandi, F. (2021). Simulation of CO2 Capture Process for Coal based Power Plant in South Sumatra Indonesia. IOP Conference Series: Materials Science and Engineering, 1143(1), 012047. doi:10.1088/1757-899X/1143/1/012047 |
9 | Garcia, J. A., Villen-Guzman, M., Rodriguez-Maroto, J. M., & Paz-Garcia, J. M. (2022). Technical analysis of CO2 capture pathways and technologies. Journal of Environmental Chemical Engineering, 10(5), 108470. doi:10.1016/j.jece.2022.108470 |
10 | Cement Technology Roadmap: Carbon Emissions Reductions up to 2050 (2009). IEA. Retrieved from: https://www.iea.org/reports/cement-technology-roadmap-carbon-emissions-reductions-up-to-2050 |
11 | Irungu, S.N., Muchiri, P., & Byiringiro, J.B. (2017). The generation of power from a cement kiln waste gases: A case study of a plant in Kenya. Energy Science & Engineering, 5(2), 90-99. doi:10.1002/ese3.153 |
12 | Janakiram, S., Espejo, M.J.L., Yu, X., Ansaloni, L., & Deng, L. (2020). Facilitated transport membranes containing graphene oxide-based nanoplatelets for CO2 separation: Effect of 2D filler properties. Journal of Membrane Science, 616, 118626. doi:10.1016/j.memsci.2020.118626 |
13 | Kamolov, A., Turakulov, Z., Rejabov, S., Díaz-Sainz, G., Gómez-Coma, L., Norkobilov, A., Fallanza, M., & Irabien, A. (2023). Decarbonization of Power and Industrial Sectors: The Role of Membrane Processes. Membranes, 13(2), 130. doi:10.3390/membranes13020130 |
14 | Li, B., Yu, J., Feng, F., Zhang, Z., & Guo, X. (2022). Simulation Study on Separation of CO2 from Flue Gas in Coal-Fired Power Plant by Membrane Method. In J. Lyu & S. Li (Eds.), Clean Coal and Sustainable Energy (pp. 633-641). Springer Singapore. doi:10.1007/978-981-16-1657-0_49 |
15 | Miroshnichenko, D., Shalygin, M., & Bazhenov, S. (2023). Simulation of the Membrane Process of CO2 Capture from Flue Gas via Commercial Membranes While Accounting for the Presence of Water Vapor. Membranes, 13(8), 692. doi:10.3390/membranes13080692 |
16 | Mkandawire, B., Thole, B., Mamiwa, D., Mlowa, T., McClure, A., Kavonic, J., & Jack, C. (2021). Application of Systems-Approach in Modelling Complex City-Scale Transdisciplinary Knowledge Co-Production Process and Learning Patterns for Climate Resilience. Systems, 9(1), 7. doi:10.3390/systems9010007 |
17 | Morgan, J., & Patomäki, H. (2021). Planetary good governance after the Paris Agreement: The case for a global greenhouse gas tax. Journal of Environmental Management, 292, 112753. doi:10.1016/j.jenvman.2021.112753 |
18 | Raksajati, A., Ho, M.T., & Wiley, D.E. (2013). Reducing the Cost of CO 2 Capture from Flue Gases Using Aqueous Chemical Absorption. Industrial & Engineering Chemistry Research, 52(47), 16887–16901. doi:10.1021/ie402185h |
19 | Richter, T., Witt, J.-H., Gesk, J.W., & Albers, A. (2019). Systematic modeling of objectives and identification of reference system elements in a predevelopment project. Procedia CIRP, 84, 579–585. doi:10.1016/j.procir.2019.04.258 |
20 | Rumayor, M., Fernández-González, J., Domínguez-Ramos, A., & Irabien, A. (2022). Deep Decarbonization of the Cement Sector: A Prospective Environmental Assessment of CO2 Recycling to Methanol. ACS Sustainable Chemistry & Engineering, 10(1), 267-278. doi:10.1021/acssuschemeng.1c06118 |
21 | Sevinov, U., Artikov, A., Narziev, M., & Khamroev, K. (2022). Development of a computer model and investigation of the process of extraction of oil fuze on the basis of system analysis. Universum: Technical Sciences, 97(4-9). doi:10.32743/UniTech.2022.97.4.13365 |
22 | Turakulov, Z., Kamolov, A., Turakulov, A., Norkobilov, A., & Fallanza, M. (2023). Assessment of the Decarbonization Pathways of the Cement Industry in Uzbekistan. ECP 2023, 2. doi:10.3390/ECP2023- 14639 |
23 | Yoro, K.O., & Daramola, M.O. (2020). CO2 emission sources, greenhouse gases, and the global warming effect. In Advances in Carbon Capture (pp. 3-28). Elsevier. doi:10.1016/B978-0-12-819657- 1.00001-3 |
24 | Zhou, W., Jiang, D., Chen, D., Griffy-Brown, C., Jin, Y., & Zhu, B. (2016). Capturing CO2 from cement plants: A priority for reducing CO2 emissions in China. Energy, 106, 464-474. doi:10.1016/j.energy.2016.03.090 |