Mazkur maqolada dorivor o‘simliklarni gelioquritish qurilmasida quritish tajribalari yoritilgan. Quritish tajribalari yangi turdagi quyosh quritgichida olib borildi. Quyosh quritgichi havo kollektori, quritish kamerasi va havo aylanish tizimidan iborat. Quritish davrida quritish moslamasining turli darajalarida quritish havosining harorati, nisbiy namligi, havo oqimi tezligi, quyosh nurlanishi va massa yo‘qotilishi doimiy ravishda o‘lchandi. Boshlang‘ich namligi 0,85 quruq modda (kg suv/kg quruq modda) bo‘lgan dorivor o‘simliklar quyosh nurlanishining o‘zgarishiga qarab har xil haroratda oxirgi namlik miqdori 0,13 (kg suv/kg quruq modda)gacha quritilgan. Quritish vaqti namlik nisbati bilan eksponensial va polinom munosabatlarga ega. Samarali diffuziya koeffitsiyenti harorat oralig‘ining turli darajalarida o‘zgargan. Barcha qo‘llangan 11 ta empirik quritish modellaridan Midilli – Kucuk va Page modellari tajriba ma’lumotlariga ko‘proq mos keldi. Xuddi shunday, matematik modelning ishlashi korrelyatsiya koeffitsiyenti (R2 ), qisqartirilgan x-kvadrat (X2 ) va o‘rtacha kvadrat xatosi (RMSE) koeffitsiyentlarini solishtirish orqali tekshirildi.
Mazkur maqolada dorivor o‘simliklarni gelioquritish qurilmasida quritish tajribalari yoritilgan. Quritish tajribalari yangi turdagi quyosh quritgichida olib borildi. Quyosh quritgichi havo kollektori, quritish kamerasi va havo aylanish tizimidan iborat. Quritish davrida quritish moslamasining turli darajalarida quritish havosining harorati, nisbiy namligi, havo oqimi tezligi, quyosh nurlanishi va massa yo‘qotilishi doimiy ravishda o‘lchandi. Boshlang‘ich namligi 0,85 quruq modda (kg suv/kg quruq modda) bo‘lgan dorivor o‘simliklar quyosh nurlanishining o‘zgarishiga qarab har xil haroratda oxirgi namlik miqdori 0,13 (kg suv/kg quruq modda)gacha quritilgan. Quritish vaqti namlik nisbati bilan eksponensial va polinom munosabatlarga ega. Samarali diffuziya koeffitsiyenti harorat oralig‘ining turli darajalarida o‘zgargan. Barcha qo‘llangan 11 ta empirik quritish modellaridan Midilli – Kucuk va Page modellari tajriba ma’lumotlariga ko‘proq mos keldi. Xuddi shunday, matematik modelning ishlashi korrelyatsiya koeffitsiyenti (R2 ), qisqartirilgan x-kvadrat (X2 ) va o‘rtacha kvadrat xatosi (RMSE) koeffitsiyentlarini solishtirish orqali tekshirildi.
В этой статье описаны эксперименты по сушке лекарственных растений в гелиосушилке. Эксперименты по сушке проводились на новом типе солнечной сушилки. Солнечная сушилка состоит из воздушного коллектора, сушильной камеры и системы циркуляции воздуха. В течение периода сушки температура сушильного воздуха, относительная влажность, скорость воздушного потока, солнечная радиация и потеря массы непрерывно измерялись на разных уровнях сушилки. Лекарственные растения с исходной влажностью сухого вещества 0,85 (1 кг воды на 1 кг сухого вещества) сушат при различных температурах до конечной влажности сухого вещества 0,13 в зависимости от изменения солнечной радиации. Время высыхания имеет экспоненциальную и полиномиальную зависимость от отношения влажности. Эффективный коэффициент диффузии варьировался на разных уровнях температурного диапазона. Из всех 11 эмпирических моделей сушилок модели Midilli – Kucuk и Page больше соответствовали экспериментальным данным. Точно так же производительность математической модели была проверена путём сравнения коэффициентов корреляции (R2 ), приведённого x-квадрата (X2 ) и среднеквадратичной ошибки (RMSE).
Experiments were made on drying medicinal plants in a solar dryer. A new type of a solar dryer was used for this purpose. The solar dryer comprises an air collector, a drying chamber and an air circulation system. In course of the drying process, drying temperature, relative humidity, air flow velocity, solar radiation, and mass loss were continuously measured at different levels of the dryer. Medicinal plants with an initial moisture content of 0.85 dry matter (kg water/kg dry matter) were dried to a final moisture content of 0.13 (kg water/kg dry matter) at different temperatures depending on changes in solar radiation. Drying time was studied as an exponential and polynomial relationship with moisture content. The effective diffusion coefficient varied at different levels of the temperature range. Of all 11 empirical drying models used, the Midilli – Kucuk and Page models best fit experimental data. Similarly, the performance of the mathematical model was tested by comparing the correlation coefficient (R2 ), reduced x-square (X2 ) and root mean square error (RMSE) coefficients
№ | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
---|---|---|---|
1 | Sultanova S.A. | texnika fanlari doktori, professor | Islom Karimov nomidagi Toshkent davlat texnika universiteti |
2 | Usmanov . . | texnika fanlari bo‘yicha falsafa doktori (PhD), katta о‘qituvchi | Toshkent kimyo-texnologiya instituti |
№ | Havola nomi |
---|---|
1 | Abhijit, T., Safarov, J. E., & Sultanova, Sh. A. (2021). Modeling of the process of drying food raw materials. (In Russian). Universum: Technical Sciences, 11(92). https://7universum.com/ru/tech/ archive/item/12638 |
2 | Basunia, M. A., & Abe, T. (2001). Thin-layer solar drying characteristics of rough rice under natural convection. Journal of Food Engineering, 47(4), 295-301. https://doi.org/10.1016/S0260- 8774(00)00133-3 |
3 | Dickinson, E. W. (1980). Solar Energy Technology Handbook (1st ed.). CRC Press. https://doi. org/10.1201/9781351076739 |
4 | Madhankumar, S., Viswanathan, K., Taipabu, M. I., & Wu, W. (2023). A review on the latest developments in solar dryer technologies for food drying process. Sustainable Energy Technologies and Assessments, 58, 103298. https://doi.org/10.1016/j.seta.2023.103298 |
5 | Mambetsheripova, A. A., et al. (2024). Results of the study of the drying process (In Russian). Universum: Technical Sciences, 3(120). https://7universum.com/ru/tech/archive/item/17107 |
6 | Noori, A. W., Royen, M. J., & Haydary, J. (2021). Thin-layer mathematical modeling of apple slices drying, using open sun and cabinet solar drying methods. International Journal of Innovative Research and Scientific Studies, 4(2), 43-52. https://doi.org/10.53894/ijirss.v4i2.55 |
7 | Safarov, Zh. E., Khuzhakulov, U. K., & Sultanova, Sh. A. (2020). Mathematical formulation of a onedimensional shrinkage model. (In Russian). Universum: Technical Sciences, 8(77). https://7universum. com/ru/tech/archive/item/10643 |
8 | Samaneh, S., Nasrin, E., & Rahimi, A. (2011). Energy and exergy analysis of an indirect solar cabinet dryer based on mathematical modeling results. Fuel and Energy Abstracts, 36, 2847-2855. https://doi.org/10.1016/j.energy.2011.02.027 |
9 | Sharshir, S. W., et al. (2023, June). Recent efforts in developing agricultural product drying processes using solar energy. Solar Energy, 257, 137-154. https://doi.org/10.1016/j. solener.2023.04.022 |
10 | Sultanova, Sh. A. (2017). Modeling the drying process of the structure of coolant flows in a water heating unit. Universum: Technical Sciences, 11(44). https://7universum.com/ru/tech/archive/item/5255 |
11 | Sultanova, Sh. A., & Usenov, A. B. (2020). Using the analytical and calculation method to describe the movement of flow elements in a Soxhlet extractor (In Russian). Universum: Technical Sciences, 11(80). https://7universum.com/ru/tech/archive/item/10907 |
12 | Sultanova, Sh. A., et al. (2024). Development of adaptive neuro-fuzzy models for predicting solar dryer performance. (In Russian). Universum: Technical Sciences, 5(122). https://7universum. com/ru/tech/archive/item/17503 |
13 | Tham, Th., Ng, M. X., Gan, Sh., Chua, L. S., Aziz, R., Abdullah, L. Ch., Ching, H., Ong, S. Ph., Chin, N., & Chung, L. (2017). Effect of Ambient Conditions on Drying of Herbs in Solar Greenhouse Dryer with Integrated Heat Pump. Drying Technology, 35. https://doi.org/10.1080/07373937.2016.1271984 |
14 | Usmanov, K. I., et al. (2020). Adaptive fuzzy synergetic control of multidimensional nonlinear dynamic objects. (In Russian). Universum: Technical Sciences, 3(72). https://7universum.com/ru/tech/ archive/item/9016 |
15 | Usmanov, K. I., et al. (2023). Synthesis of a control system for the process of diesel fuel hydropuring with the Adar method. E3S Web of Conferences – EDP Sciences, 458, 01025. |
16 | Usmanov, K., Eshbobaev, J., & Yakubova, N. (2023). Modeling and optimization of the ammonium solution extraction process. Eng. Proc., 52(198). https://doi.org/10.3390/ASEC2023- 16274 |
17 | Vijayan, S., Arjunan, T. V., & Kumar, A. (2016). Mathematical modeling and performance analysis of thin layer drying of bitter gourd in sensible storage based indirect solar dryer. Innovative Food Science & Emerging Technologies, 36, 59-67. https://doi.org/10.1016/j.ifset.2016.05.014 |
18 | William, B. (1977). Direct solar drying of fruits and vegetables in the southeastern united states. Energy Use Manag. Proc. Int. Conf. Tucson, 3-4, 521-525. New York. |
19 | Yaldiz, O., Ertekin, C., & Uzun, H.I. (2001). Mathematical modeling of thin layer solar drying of Sultana grapes. Energy, 26, 457-465. https://doi.org/10.1016/S0360-5442(01)00018-4 |