23

Maqolada kon lahimlari va tajriba qurilmalarida o‘tkazilgan eksperimental tadqiqotlarda shamollatish tarmoqlaridagi germetik bo‘lmagan kon lahimlariga berilayotgan havo oqimini yo‘naltirish va boshqarish, havo miqdorining germetik bo‘lmagan konlarda lahimlar uzunligi, ular o‘rtasidagi bog‘lanish holati, tashqi va ichki havo yo‘qotishlari, aerodinamik qarshiliklar qiymatlarini aniqlash hamda aerodinamik qarshiliklarni kamaytirish masalalari ko‘rib chiqilgan. Tadqiqot ishi laboratoriya sharoitida ishlab chiqilgan aerodinamik quvurli stend va tabiiy sharoitda Zarmitan koni lahimlari topologiyasiga mos ravishda ishlab chiqilgan fizik modelda o‘tkazilgan. Konda havo oqimining yo‘qotilishi kon lahimlarining germetiklik darajasi, lahimlarning germetiklik darajasi esa lahimlarda havo harakatlanishi jarayonida yuzaga keladigan aerodinamik qarshilik qiymatlariga bog‘liq. Aerodinamik qarshilik qiymatlari, o‘z navbatida, aerodinamik qarshilik koeffitsiyentlari va ishqalanish koeffitsiyentlari ham lahimning nogermetiklik darajasi hamda Reynolds soniga bog‘liq holda o‘zgaradi. Tadqiqot davomida kon lahimlarining bir-biri bilan bog‘langan nuqtalarida ichki va tashqi havo yo‘qotilishlari aniqlangan. Ushbu yo‘qotilishlarning oldini olish uchun havo oqimini boshqarish va yo‘naltirishning turli usullarini qo‘llash zarurligi o‘lchovlar va tahlillar orqali isbotlangan. Shuningdek, maqolada murakkab shamollatish tizimlariga ega, germetik bo‘lmagan kon lahimlarining shamollatish samaradorligini oshirish uchun kon lahimlarining germetiklash usullari va germetiklash vositalari yordamida aerodinamik ko‘rsatkichlar o‘zgarishi natijalari keltirilgan. Konlarda shamollatish tizimlari elementlarida havo harakatida kon lahimlarining aerodinamik qarshiligi, mahalliy qarshiliklar va ayniqsa, shamollatish tarmog‘ining germetik bo‘lmagan uchastkalari aerodinamik ko‘rsatkichlarni doimiy ravishda o‘lchab borishni talab etadi. Shaxtalarda shamollatish tizimidagi aerodinamik masalalarni hal qilish uchun konlarda shamollatishni yaxshilash bo‘yicha ishlab chiqilgan kompleks yondashuvlardan keng foydalanish tavsiya etilgan.

  • Internet havola
  • DOI
  • UzSCI tizimida yaratilgan sana 26-12-2024
  • O'qishlar soni 23
  • Nashr sanasi 14-12-2024
  • Asosiy tilO'zbek
  • Sahifalar8-17
Ўзбек

Maqolada kon lahimlari va tajriba qurilmalarida o‘tkazilgan eksperimental tadqiqotlarda shamollatish tarmoqlaridagi germetik bo‘lmagan kon lahimlariga berilayotgan havo oqimini yo‘naltirish va boshqarish, havo miqdorining germetik bo‘lmagan konlarda lahimlar uzunligi, ular o‘rtasidagi bog‘lanish holati, tashqi va ichki havo yo‘qotishlari, aerodinamik qarshiliklar qiymatlarini aniqlash hamda aerodinamik qarshiliklarni kamaytirish masalalari ko‘rib chiqilgan. Tadqiqot ishi laboratoriya sharoitida ishlab chiqilgan aerodinamik quvurli stend va tabiiy sharoitda Zarmitan koni lahimlari topologiyasiga mos ravishda ishlab chiqilgan fizik modelda o‘tkazilgan. Konda havo oqimining yo‘qotilishi kon lahimlarining germetiklik darajasi, lahimlarning germetiklik darajasi esa lahimlarda havo harakatlanishi jarayonida yuzaga keladigan aerodinamik qarshilik qiymatlariga bog‘liq. Aerodinamik qarshilik qiymatlari, o‘z navbatida, aerodinamik qarshilik koeffitsiyentlari va ishqalanish koeffitsiyentlari ham lahimning nogermetiklik darajasi hamda Reynolds soniga bog‘liq holda o‘zgaradi. Tadqiqot davomida kon lahimlarining bir-biri bilan bog‘langan nuqtalarida ichki va tashqi havo yo‘qotilishlari aniqlangan. Ushbu yo‘qotilishlarning oldini olish uchun havo oqimini boshqarish va yo‘naltirishning turli usullarini qo‘llash zarurligi o‘lchovlar va tahlillar orqali isbotlangan. Shuningdek, maqolada murakkab shamollatish tizimlariga ega, germetik bo‘lmagan kon lahimlarining shamollatish samaradorligini oshirish uchun kon lahimlarining germetiklash usullari va germetiklash vositalari yordamida aerodinamik ko‘rsatkichlar o‘zgarishi natijalari keltirilgan. Konlarda shamollatish tizimlari elementlarida havo harakatida kon lahimlarining aerodinamik qarshiligi, mahalliy qarshiliklar va ayniqsa, shamollatish tarmog‘ining germetik bo‘lmagan uchastkalari aerodinamik ko‘rsatkichlarni doimiy ravishda o‘lchab borishni talab etadi. Shaxtalarda shamollatish tizimidagi aerodinamik masalalarni hal qilish uchun konlarda shamollatishni yaxshilash bo‘yicha ishlab chiqilgan kompleks yondashuvlardan keng foydalanish tavsiya etilgan.

Русский

В статье рассмотрены вопросы направления и управления воздушным потоком, подаваемым в негерметичные горные выработки по вентиляционным сетям, при помощи экспериментальных исследований на шахтных и экспериментальных установках, определения количества воздуха по длине выработок в негерметичных шахтах, состояния связи между ними, значений потерь наружного и внутреннего воздуха, аэродинамических сопротивлений и снижения аэродинамических сопротивлений. Исследовательская работа проводилась на стенде с аэродинамической трубой, разработанном в лабораторных условиях, и на физической модели, разработанной в соответствии с топологией выработок месторождения Зармитан в естественных условиях. Потери воздушного потока в шахте зависят от степени герметичности горных выработок, а степень герметичности выработок зависит от величин аэродинамического сопротивления, возникающих в процессе движения в них воздуха. Значения аэродинамического сопротивления в свою очередь изменяются в зависимости от коэффициентов трения, а также степени негерметичности выработки и числа Рейнольдса. В ходе исследования были выявлены потери внутреннего и наружного воздуха в точках соприкосновения горных выработок. Необходимость использования различных методов управления и направления воздушного потока для предотвращения этих потерь была доказана измерениями и анализом. Также в статье представлены результаты изменения аэродинамических показателей с помощью методов герметизации и герметизирующих средств для повышения эффективности вентиляции негерметичных горных выработок со сложными системами вентиляции. Аэродинамическое сопротивление при движении воздуха в элементах систем вентиляции шахт, местное сопротивление и особенно негерметичные участки вентиляционной сети требуют постоянного измерения аэродинамических показателей. Для решения аэродинамических задач в системе вентиляции шахт рекомендовано широкое применение разработанных комплексных подходов к улучшению их вентиляции.

English

The article reveals issues of directing and controlling the air flow supplied to permeable mine excavations in ventilation networks through experimental studies at mining and experimental rigs, determining the values of external and internal air losses and aerodynamic resistances relating to the amount of air supplied to permeable mine workings, the length of the mine excavations in permeable mines, the state of binding between the workings and reduction of aerodynamic drag. The research was made using a stand developed in laboratory conditions as well in natural conditions by means of a physical model made in accordance with the topology of the mine workings of the Zarmitan deposit. The loss of the air flow in the mine depends on the degree of the excavation’ tightness, while the latter will depend on the values of aerodynamic resistance developing within the process of air movement in the excavation. Values of aerodynamic resistance, in turn, also vary depending on the level of leakage of the mine as well as on the of aerodynamic drag- and friction coefficients, and Reynolds number. The study revealed internal and external air losses at the points of contact of the mine workings. The need for various methods for the air flow control in view of the losses’ prevention, has been proven by means of measurements and analysis. Also, the article presents effects from changes of aerodynamic parameters using sealing methods and agents that serve to increase ventilation efficiency of leaky mine workings with complex ventilation systems. Aerodynamic resistance during air movement within the elements of mine ventilation systems, local resistance and especially leaky sections of the ventilation network require continuous measurement of aerodynamic parameters. Broad use of the developed comprehensive approaches to improvement of mines’ ventilation system is being recommended in view to address the aerodynamic issues in the ventilation system of mines.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Musurmanov E.S. texnika fanlari bo‘yicha falsafa doktori (PhD), “Konchilik elektr mexanikasi” kafedrasi dotsenti v. b Navoiy davlat konchilik va texnologiyalar universiteti
Havola nomi
1 Alymenko, N. I., Kamenskikh, A. A., & Nikolayev, A. V. (2011). Air curtain and general mine natural draft (p. 280). (In Russian). Moscow: Gornaya kniga Publ.
2 Alymenko, N. I., Kamenskikh, A. A., Nikolaev, A. V., & Petrov, A. I. (2015). The choice of the main fan installation. Current Problems of Enhancing Efficiency and Safety of Underground Mining and Oil Field Equipment: Proceedings of the 2nd International Scientific and Practical Conference (vol. 1, pp. 190-199). Perm: PNIPU Publ.
3 Bacot, A., Frank, D., & Linden, P. F. (2022). Bubble curtains used as barriers across horizontal density stratifications. Journal of Fluid Mech., 941, 1-41. http://dx.doi.org/10.1017/jfm.2022.142
4 Kaledina, N. O., & Kobylkin, S. S. (2013). General modeling as a method for studying and controlling thermal and aerodynamic processes at mining enterprises. (In Russian). Mining Information and Analysis Bulletin (GIAB). Nedelya Gornyaka – 2013: Proceedings of the International scientific symposium (pp. 149-156).
5 Kamenskikh, A. A. (2011). Development of methods for monitoring and reducing surface air leaks in mines [Abstract of PhD thesis]. (In Russian). Mining Institute of the Ural Branch of the Russian Academy of Sciences.
6 Kazakov, B. P., Kolesov, E. V., & Isayevich, A. G. (2021). Review of models and methods for calculating aerogasdynamic processes in ventilation networks of mines and quarries. (In Russian). Mining Information and Analytical Bulletin, 6, 5-33. https://doi.org/10.25018/023614 932021605
7 Kozyrov S. A., Osintseva A. V., & Amosov, P. V. (2019). Control of ventilation flows in underground mine workings based on mathematical modeling of aerodynamic processes (p. 114) [Monograph]. (In Russian). Apatity: KSC RAS.
8 Leviskiy, J. G., & Nurgaliyeva, A. D. (2011). Air flow control in a ventilation network with an active regulator. (In Russian). Bulletin of Kuzbass State Technical University, 4, 23-27. Kemerovo.
9 Leviysky, J. G. (2012). Mine ventilation networks [Monograph]. (In Russian). Karaganda: Karaganda State Technical University Publ.
10 Mahmudov, A., Musurmanov, E. Sh., Akhmedov, S. T. (2023). Improving the efficiency of ventilation equipment controlling air flow. (In Russian). Universum: Technical Sciences, 9 (114), 16-21. https://doi.org/10.32743/UniTech.2023.114.9.16013
11 Maltsev, S. V., & Kazakov, B. P. (2015). Development of a methodology for conducting experimental studies to determine the aerodynamic resistances of deep mine shafts. (In Russian). PNRPU Publ. (Perm), 271-278.
12 Maltsev, S. V. (2020). Research and development of methods for determining the aerodynamic parameters of complex ventilation systems of underground mines (p. 24) [Abstract of the PhD thesis]. (In Russian). Perm: GI UrO RAS.
13 Mislibayev, I. T., & Мusurmanov, E. Sh. (2023). Application of air curtains to improve air flow control efficiency in the Gujumsoy mine shaft. (In Uzbek). Science and Innovative Development, 5, 23-32.
14 Мusurmanov, E. Sh. (2023). Optimization of ventilation of sites in mines with complex mining and technological conditions. (In Uzbek). Science and Innovative Development, 3, 24-31.
15 Nikolaev, A. V., Alymenko, N. I., Kamenskikh, A. A., Fet, Sh.,K. & Nikolaev, V. A. (2017). The results of modeling the mine ventilation process with the location of an air curtain in the air supply and ventilation shafts. (In Russian). Bulletin of PNRPU. Geology. Oil and gas and mining, 16 (3), 291-300.
16 Nikolaev, A. V. (2020). Scientific substantiation and development of technical and technological solutions to ensure occupational safety at underground mining enterprises by means of energy-efficient ventilation (p. 300) [PhD thesis]. (In Russian). Kemerovo: GI UrO RAS.
17 Pavlov, A. S. (2019). On changes in the aerodynamic resistance of a ventilation system shaft during air flow reversal. (In Russian). Fundamental and Advanced Issues of Mining Science, 6 (2), 207-211.
18 Pavlov, S. A. (2021). Ventilation of the bottomhole space of an extended dead-end mine due to the ejection effect that occurs when installing a longitudinal partition. (In Russian). Fundamental and Applied Issues of Mining Sciences, 8 (1), 260-266.
19 Sadikov, А., & Bаrаtov, B. N. (2013). Stationary machines (In Uzbek). Tashkent: TSTU.
20 Semin, M. A. (2014). Numerical modeling of aerodynamic processes at the interface of the ventilation duct with the trunk. (In Russian). Problems of Development of Deposits of Hydrocarbon and Ore Minerals, 1, 419-422. Perm: PNRPU Publ.
Kutilmoqda