22

Elektr energiyasiga talabning ortib borishi va iste’molchilarni uzluksiz hamda sifatli elektr energiyasi bilan ta’minlash har qanday energiya tizimining bugungi kundagi asosiy vazifasi hisoblanadi. Shuningdek, energetika tizimida iste’mol talabining keskin ortib borishi tizimda yetishmovchilik muammolari, tig‘iz davrlarda maksimal yuklamaning ortishiga olib kelmoqda. Energetika tizimida sanoat korxonalari elektr energiyasi iste’molidagi eng yuqori tarmoq hisoblanadi. Shu sababli energetika tizimi barqarorligini ta’minlashga sanoat korxonalari yuklamalarini rostlash orqali erishish mumkin. Ushbu maqolada sanoat korxonalarida yuklamalarni rostlashning iste’mol talabini boshqarish, quvvat koeffitsiyentini rostlash, qayta tiklanuvchi energiya manbalaridan foydalanish, energiya saqlash qurilmalarini qo‘llash, tarmoq cheklovlarini joriy etish hamda tariflashni joriy etish usullari tahlili keltirilgan. Shuningdek, foydalanilayotgan usullarning elektr tarmog‘i turg‘unligi, har birining o‘ziga xos ijobiy va salbiy tomonlari tahlil qilinib, tig‘iz davrlarda kunning boshqa vaqtiga nisbatan elektr energiyasiga to‘lov miqdorining o‘zgarishi, tizim ishonchliligini ta’minlash va korxona energiya samaradorligiga ta’siri tahlillari ko‘rib chiqilgan. Olib borilgan izlanishlar natijasidan kelib chiqib, iste’molchilarni qayta tiklanuvchi energiya manbalarini akkumulyatsiya qilish va undan tig‘iz davrlarda foydalanishni rag‘batlantiruvchi tarif tizimini ishlab chiqish ilgari surilgan.

  • Internet havola
  • DOI
  • UzSCI tizimida yaratilgan sana 26-12-2024
  • O'qishlar soni 22
  • Nashr sanasi 14-12-2024
  • Asosiy tilO'zbek
  • Sahifalar31-41
Ўзбек

Elektr energiyasiga talabning ortib borishi va iste’molchilarni uzluksiz hamda sifatli elektr energiyasi bilan ta’minlash har qanday energiya tizimining bugungi kundagi asosiy vazifasi hisoblanadi. Shuningdek, energetika tizimida iste’mol talabining keskin ortib borishi tizimda yetishmovchilik muammolari, tig‘iz davrlarda maksimal yuklamaning ortishiga olib kelmoqda. Energetika tizimida sanoat korxonalari elektr energiyasi iste’molidagi eng yuqori tarmoq hisoblanadi. Shu sababli energetika tizimi barqarorligini ta’minlashga sanoat korxonalari yuklamalarini rostlash orqali erishish mumkin. Ushbu maqolada sanoat korxonalarida yuklamalarni rostlashning iste’mol talabini boshqarish, quvvat koeffitsiyentini rostlash, qayta tiklanuvchi energiya manbalaridan foydalanish, energiya saqlash qurilmalarini qo‘llash, tarmoq cheklovlarini joriy etish hamda tariflashni joriy etish usullari tahlili keltirilgan. Shuningdek, foydalanilayotgan usullarning elektr tarmog‘i turg‘unligi, har birining o‘ziga xos ijobiy va salbiy tomonlari tahlil qilinib, tig‘iz davrlarda kunning boshqa vaqtiga nisbatan elektr energiyasiga to‘lov miqdorining o‘zgarishi, tizim ishonchliligini ta’minlash va korxona energiya samaradorligiga ta’siri tahlillari ko‘rib chiqilgan. Olib borilgan izlanishlar natijasidan kelib chiqib, iste’molchilarni qayta tiklanuvchi energiya manbalarini akkumulyatsiya qilish va undan tig‘iz davrlarda foydalanishni rag‘batlantiruvchi tarif tizimini ishlab chiqish ilgari surilgan.

Русский

Растущий спрос на электроэнергию и обеспечение потребителей бесперебойной и качественной электроэнергией являются сегодня основной задачей любой энергосистемы. Также резкий рост потребительского спроса в энергосистеме приводит к проблемам дефицита, увеличению максимальной нагрузки в периоды перегрузки системы. Промышленные предприятия являются отраслью с самым высоким потреблением электроэнергии во всей энергосистеме. Поэтому обеспечение устойчивости энергосистемы может быть достигнуто путём корректировки нагрузок промышленных предприятий. В данной статье представлен анализ методов регулирования нагрузок на промышленных предприятиях: управления потребительским спросом, регулирования коэффициента мощности, использования возобновляемых источников энергии, применения энергосберегающих устройств, введения сетевых ограничений и тарификации. Также были проанализированы устойчивость электрической сети при применяемых методах, специфические плюсы и минусы каждого из них, изменение размера платы за электроэнергию в периоды перегрузок по сравнению с другим временем суток, обеспечение надёжности системы и влияние на энергоэффективность предприятия. Исходя из результатов проведённого исследования, было выдвинуто предложение по разработке тарифной системы, стимулирующей потребителей к аккумулированию энергии из возобновляемых источников и её использованию в периоды перегрузок.

English

Growing demand for and supply of continuous and high-quality electricity to consumers are regarded as the main task of any energy system nowadays. Moreover, sharp rise in consumption demand causes shortages in the energy system and raises the maximum load in peak periods. Industrial enterprises are considered as a branch with the highest power consumption level in the entire energy system. Therefore, sustainable energy system can be achieved by adjusting the loads of industrial enterprises. This article discusses analyses of the methods designed for managing consumer demand, adjusting of loads in industrial enterprises, adjusting the power factor, using renewable energy sources, applying the energy storage devices, introducing network restrictions, and introducing tariffs. Sustainability of the electricity network with the applied methods, as well as specific advantages and disadvantages of each of them as well as the change in the amounts of payment for electricity during peak periods compared to other times of the day and ensuring of the system reliability and the impact power efficiency of companies, have been reviewed. Based on the research findings, the development of a tariff system that will encourage consumers to accumulate renewable energy sources and use them in peak periods has been suggested.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Kadirov K.S. texnika fanlari doktori (DSc), “Energiya samaradorligi va energiya tejash tizimlari” laboratoriyasi mudiri O‘zbekiston Respublikasi Fanlar akademiyasi Energetika muammolari instituti
2 Toxtashev A.A. Energetika fakulteti doktoranti Farg‘ona politexnika instituti
Havola nomi
1 Ali, S., Rehman, A., Wadud, Z., Khan, I., Murawwat, S., Hafeez, G., Albogamy, F., Khan, S., & Omaji, S. (2022). Demand Response Program for Efficient Demand-Side Management in Smart Grid Considering Renewable Energy Sources. IEEE Access, 10, 53832-53853. https://doi.org/10.1109/ ACCESS.2022.3174586
2 Arif, A., Javed, F., & Arshad, N. (2014). Integrating renewables economic dispatch with demand side management in micro-grids: a genetic algorithm-based approach. Energy Efficiency, 7, 271-284. https://doi.org/10.1007/S12053-013-9223-9
3 Babu, C., & Ashok, S. (2008). Process Optimization for Industrial Load Management. International Energy Journal, 9 (3), 215-220. http://www.rericjournal.ait.ac.th/index.php/reric/article/ view/488/305
4 Bagheri-Sanjareh, M., Nazari, M., & Hosseinian, S. (2020). Energy management of islanded microgrid by coordinated application of thermal and electrical energy storage systems. International Journal of Energy Research, 45, 5369-5385. https://doi.org/10.1002/er.6160
5 Batyaeva, A. (2023). Pandemic restrictions are over: an overview of changes in the main economic indicators of enterprises (Part 2). Investment activity of enterprises and changes in the output structure. In: Russian Economic Barometer. https://doi.org/10.20542/reb.rus-2023-1-3-12
6 Bharathi, C., Rekha, D., & Vijayakumar, V. (2017). Genetic Algorithm Based Demand Side Management for Smart Grid. Wireless Personal Communications, 93, 481-502. https://doi.org/10.1007/ s11277-017-3959-z
7 Bistline, J., Roney, C., McCollum, D., & Blanford, G. (2021). Deep decarbonization impacts on electric load shapes and peak demand. Environmental Research Letters, 16. https://doi. org/10.1088/1748-9326/ac2197
8 Chen, W., & Jiang, X. (2024). Global Energy Consumption and Its Impact on Industrial Sectors: A Comprehensive Review. Energy Reports, 10, 1234-1249. Elsevier. https://doi.org/10.1016/j. egyr.2023.12.005
9 Cipcigan, L., Chindris, M., Rull, J., Rusu, A., Sumper, A., Ramirez, R., & Alves, R. (2006). Mitigation of Capacitor Bank Energization Harmonic Transients. 2006 IEEE/PES Transmission & Distribution Conference and Exposition: Latin America, 1-5. https://doi.org/10.1109/TDCLA.2006.311440
10 Fan, J., Tang, B., Yu, H., Hou, Y., & Wei, Y. (2014). Impact of climatic factors on monthly electricity consumption of China’s sectors. Natural Hazards, 75, 2027-2037. https://doi.org/10.1007/ s11069-014-1375-1
11 Foster, V., & Witte, S. H. (2020). Falling short: A global survey of electricity tariff design. World Bank Policy Research Working Paper, 9174. https://documents1.worldbank.org/curated/ en/568181583337584393/pdf/Falling-Short-A-Global-Survey-of-Electricity-Tariff-Design.pdf
12 Hadzhiev, I., Malamov, D., Balabozov, I., & Yatchev, I. (2019). Analysis of Higher Harmonics During Reactive Power Compensation by a Capacitor Bank. Proceedings of the 2019 II International Conference on High Technology for Sustainable Development (HiTech), 1-4. https://doi.org/10.1109/ HiTech48507.2019.9128122
13 Isakov, A., et al. (2023). Characteristics of application of different time rates for electricity consumed in industrial enterprises. E3S Web of Conferences. EDP Sciences, 401, 05049.
14 Jamshidi, M., & Askarzadeh, A. (2019). Techno-economic analysis and size optimization of an off-grid hybrid photovoltaic, fuel cell and diesel generator system. Sustainable Cities and Society, 44, 310–320.
15 Javaid, S., Kaneko, M., & Tan, Y. (2021). Safe Operation Conditions of Electrical Power System Considering Power Balanceability among Power Generators, Loads, and Storage Devices. Energies. https://doi.org/10.3390/EN14154460.
16 Kalhari, M., Bandara, H. E., & Ediriweera, S. (2022). Power Factor Improvement of Industrial Loads using a Capacitor Bank and a Solar PV System. Proceedings of the 7th International Conference on Advances in Technology and Computing (ICATC 2022).
17 Kamal, T., Hassan, Z., Saleem, M., Shakir, M., Usman, M., Bajwa, M., Shabbir, N., & Daniel, K. (2023). Integrating Smart Energy Management System with Internet of Things and Cloud Computing for Efficient Demand Side Management in Smart Grids. Energies, 16 (12), 4835. https://doi. org/10.3390/en16124835
18 Kandpal, B., & Verma, A. (2022). Demand Peak Reduction of Smart Buildings Using FeedbackBased Real-Time Scheduling of EVs. IEEE Systems Journal, 16, 4279-4290. https://doi.org/10.1109/ JSYST.2021.3113977
19 Koliou, E. (2016). Demand Response Policies for the Implementation of Smart Grids [Tesis Doctoral]. Programa de Doctorado Erasmus Mundus en Tecnologías y Estrategias Energéticas Sostenibles / Erasmus Mundus Joint Doctorate in Sustainable Energy Technologies and Strategies. http://hdl.handle.net/11531/7166
20 Koliou, E., Eid, C., Chaves-Avila, J.P., & Hakvoort, R.A. (2014). Demand response in liberalized electricity markets: analysis of aggregated load participation in the German balancing mechanism. Energy, 71, 245-254. Elsevier. https://doi.org/10.1016/j.energy.2014.04.067
21 Lin, W., Tu, C., & Tsai, M. (2015). Energy Management Strategy for Microgrids by Using Enhanced Bee Colony Optimization. Energies, 9, 1-16. https://doi.org/10.3390/EN9010005
22 Mahmud, K., Hossain, M., & Ravishankar, J. (2019). Peak-Load Management in Commercial Systems With Electric Vehicles. IEEE Systems Journal, 13, 1872-1882. https://doi.org/10.1109/ JSYST.2018.2850887
23 Miao, C., et al. (2021). Spatial heterogeneity and evolution trend of regional green innovation efficiency – an empirical study based on panel data of industrial enterprises in China’s provinces. Energy Policy, 156, 112370.
24 Mohasoa, L. E., et al. (2020). Development of time-of-use-tariffs [PhD thesis]. National University of Lesotho.
25 Paul, W., Siddiqui, A., & Kirmani, S. (2022). Demand side management and demand response for optimal energy usage: an Overview. Paripex Indian Journal of Research, 11 (11), 151-152. https://doi. org/10.36106/paripex/0608823
26 Plando, I. (2023). Utilizing Renewable Energy Sources for Sustainable Air Conditioning and Refrigeration. International Journal of Advanced Research in Science, Communication and Technology, 3 (2), 877-881. https://doi.org/10.48175/IJARSCT-12387
27 Qela, B., & Mouftah, H. (2014). Peak Load Curtailment in a Smart Grid Via Fuzzy System Approach. IEEE Transactions on Smart Grid, 5, 761-768. https://doi.org/10.1109/TSG.2013.2289922
28 Savić, S., Selakov, A., & Milošević, D. (2014). Cold and warm air temperature spells during the winter and summer seasons and their impact on energy consumption in urban areas. Natural Hazards, 73, 373-387. https://doi.org/10.1007/s11069-014-1074-y
29 Sekaran, K., Selvan, C., Anita, J., & Nagaraj, M. (2022). Automatic Power Factor Correction System Using IoT in University Building. Proceedings of the 2022 Advances in Science and Engineering Technology International Conferences (ASET), 1-6. https://doi.org/10.1109/ ASET53988.2022.9734913
30 Sher, F., Curnick, O., & Azizan, M. (2021). Sustainable Conversion of Renewable Energy Sources. Sustainability, 13 (5), 2940. https://doi.org/10.3390/SU13052940
31 Silva, B. N., Khan, M., & Han, K. (2020). Futuristic sustainable energy management in smart environments: A review of peak load shaving and demand response strategies, challenges, and opportunities. Sustainability, 12, (14), 5561. https://doi.org/10.3390/su12145561
32 Torriti, J. (2012). Price-based demand side management: Assessing the impacts of time-ofuse tariffs on residential electricity demand and peak shifting in Northern Italy. Energy, 44, 576-583. https://doi.org/10.1016/J.ENERGY.2012.05.043
33 Wenz, L., Levermann, A., & Auffhammer, M. (2017). North-south polarization of European electricity consumption under future warming. Proceedings of the National Academy of Sciences, 114, E7910-E7918. https://doi.org/10.1073/pnas.1704339114
34 Yan, R., Saha, T. K., Modi, N., Masood, N.-A., & Mosadeghy, M. (2015). The combined effects of high penetration of wind and PV on power system frequency response. Appl. Energy, 145, 320-330. https://doi.org/10.1016/j.apenergy.2015.02.044
35 Yang, P., & Nehorai, A. (2013). Joint Optimization of Hybrid Energy Storage and Generation Capacity with Renewable Energy. IEEE Transactions on Smart Grid, 5, 1566-1574. https://doi. org/10.1109/TSG.2014.2313724
36 Zhang, L., Jabbari, F., Brown, T., & Samuelsen, S. (2017). Coordinating plugin electric vehicle charging with electric grid: Valley filling and target load following. Power Sources, 267, 584-597. https://doi.org/10.1016/j.jpowsour.2014.04.078
37 Zheng, F., & Zhang, W. (2017). Long term effect of power factor correction on the industrial load: A case study. Proceedings of the 2017 Australasian Universities Power Engineering Conference (AUPEC), 1-5. https://doi.org/10.1109/AUPEC.2017.8282382
Kutilmoqda