Ushbu maqolada texnik jihatdan murakkab bo‘lgan, ayniqsa, ko‘plab fizik parametrlar rostlanishi kerak bo‘lgan texnologik jarayonlar uchun noaniq mantiqqa asoslangan intellektual rostlagichlarni loyihalashtirish bosqichlari bayon etilgan. Bunday turdagi rostlagichlar texnologik jarayonlarni boshqarish sohasida, xususan, optimal qiymatlarni topish, tashqi ta’sirlar va parametrik noaniqliklar mavjud sharoitda PID rostlagichlarga nisbatan yuqori sifat ko‘rsatkichlarini ta’minlash asosiy maqsad qilib olingan. Mavjud muammoni hal qilish uchun noaniq mantiq va kasr tartibli hisoblashni o‘zida mujassamlashtirgan rostlagich taklif etilgan. Bu turdagi rostlagichlarni amaliyotga joriy etish uchun STM32 mikrokontrollerlari, xususan, STM32FG407VET6 modeli tanlangan hamda rostlagich dasturiy ta’minoti C++ STM32CubeIDE muhiti dasturlash tilida
ishlab chiqilgan. Maqolada taklif etilgan rostlagichni evolyutsion yaratishning nazariy jihatlari chuqur bayon etilgan bo‘lib, boshqaruv algoritmining yaratilish bosqichlari yoki ketma-ketligi batafsil keltirilgan. Amaliy jihatdan tashkil etilgan tajribalar natijasi shuni ko‘rsatadiki, rostlagich nochiziqlilik va noaniqlik
xususiyatlari mavjud bo‘lgan murakkab texnik boshqaruv tizimlarini nazorat qilishda yuqori darajada samaradorlikka ega. Eksperimental tajribalar MATLAB va STM32 muhitida amalga oshirilib, grafiklar va simulyatsiya diagrammalari orqali natijalar olingan. Taqdim etilgan nazariy asoslar, uslubiy ko‘rsatmalar
intellektual boshqaruv tizimlari muhandislari va avtomatlashtirish sohasining yetuk mutaxassislari uchun qimmatli manba bo‘lib xizmat qilishi mumkin.
Ushbu maqolada texnik jihatdan murakkab bo‘lgan, ayniqsa, ko‘plab fizik parametrlar rostlanishi kerak bo‘lgan texnologik jarayonlar uchun noaniq mantiqqa asoslangan intellektual rostlagichlarni loyihalashtirish bosqichlari bayon etilgan. Bunday turdagi rostlagichlar texnologik jarayonlarni boshqarish sohasida, xususan, optimal qiymatlarni topish, tashqi ta’sirlar va parametrik noaniqliklar mavjud sharoitda PID rostlagichlarga nisbatan yuqori sifat ko‘rsatkichlarini ta’minlash asosiy maqsad qilib olingan. Mavjud muammoni hal qilish uchun noaniq mantiq va kasr tartibli hisoblashni o‘zida mujassamlashtirgan rostlagich taklif etilgan. Bu turdagi rostlagichlarni amaliyotga joriy etish uchun STM32 mikrokontrollerlari, xususan, STM32FG407VET6 modeli tanlangan hamda rostlagich dasturiy ta’minoti C++ STM32CubeIDE muhiti dasturlash tilida
ishlab chiqilgan. Maqolada taklif etilgan rostlagichni evolyutsion yaratishning nazariy jihatlari chuqur bayon etilgan bo‘lib, boshqaruv algoritmining yaratilish bosqichlari yoki ketma-ketligi batafsil keltirilgan. Amaliy jihatdan tashkil etilgan tajribalar natijasi shuni ko‘rsatadiki, rostlagich nochiziqlilik va noaniqlik
xususiyatlari mavjud bo‘lgan murakkab texnik boshqaruv tizimlarini nazorat qilishda yuqori darajada samaradorlikka ega. Eksperimental tajribalar MATLAB va STM32 muhitida amalga oshirilib, grafiklar va simulyatsiya diagrammalari orqali natijalar olingan. Taqdim etilgan nazariy asoslar, uslubiy ko‘rsatmalar
intellektual boshqaruv tizimlari muhandislari va avtomatlashtirish sohasining yetuk mutaxassislari uchun qimmatli manba bo‘lib xizmat qilishi mumkin.
В данной статье изложены этапы проектирования интеллектуальных регуляторов на основе нечёткой логики, предназначенных для технологических процессов с технически сложными
условиями и множественными регулируемыми физическими параметрами. Основной целью разработки таких регуляторов является обеспечение более высоких качественных показателей управления по сравнению с традиционными PID-регуляторами в условиях наличия внешних воздействий и параметрических неопределённостей. В качестве решения предложен регулятор, сочетающий в себе элементы нечёткой логики и вычислений дробного порядка. Для его практической реализации выбран микроконтроллер STM32, в частности модель STM32FG407VET6, а программное обеспечение регулятора разработано на языке C++ в среде STM32CubeIDE. В статье подробно изложены теоретические основы эволюционной разработки предлагаемого регулятора, а также приведены этапы и последовательность построения управляющего алгоритма. Результаты практических экспериментов показали высокую эффективность предлагаемого регулятора при управлении сложными техническими системами с нелинейными и неопределёнными характеристиками. Эксперименты были проведены в средах MATLAB и STM32, а полученные результаты представлены в виде графиков и диаграмм моделирования. Представленные теоретические положения и методические рекомендации могут служить ценным ресурсом для инженеров интеллектуальных систем управления и специалистов в области автоматизации.
This article presents the stages of designing intelligent controllers based on fuzzy logic for technological processes that are technically complex, especially those that require adjustments to many physical parameters. The main task of controllers of this class is to determine their optimal values and provide higher quality indicators than PID controllers in the presence of external influences and
parametric uncertainties within the framework of the problem of controlling technological processes in industry. To solve the current problem, a controller combining fuzzy logic and fractional-order arithmetic is proposed. STM32 microcontrollers, in particular the STM32FG407VET6 model, were selected for the
practical implementation of this type of controller, and the controller software was developed in the STM32CubeIDE environment in the C++ programming language. The article describes in depth the theoretical aspects of the evolutionary creation of the proposed controller and describes in detail the stages or sequence of creation of the control algorithm. The results of the practically organized experiments show that the controller has achieved high efficiency in controlling complex technical
control systems with nonlinearity and uncertainty. The results of the conducted experimental experiments are shown through graphs and simulation diagrams obtained in the MATLAB and STM32 environments. Also, the theoretical foundations and methodological guidelines presented can serve as a valuable resource for engineers of intellectual control systems and advanced specialists in the field of
automation.
| № | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
|---|---|---|---|
| 1 | Botirov T.V. | texnika fanlari doktori (DSc), “Avtomatlashtirish va boshqaruv” kafedrasi professori | Navoiy davlat konchilik va texnologiyalar universiteti |
| 2 | Sodiqov B.Q. | tayanch doktorant | Navoiy davlat konchilik va texnologiyalar universiteti |
| № | Havola nomi |
|---|---|
| 1 | AbouOmar, M. S., Zhang, H. J., & Su, Y. X. (2019). Fractional order fuzzy PID control of automotive PEM fuel cell air feed system using neural network optimization algorithm. Energies, 12(8), 1435. https://www.mdpi.com/1996-1073/12/8/1435 |
| 2 | Al-Dhaifallah, M. (2023). Fuzzy fractional-order PID control for heat exchanger. Alexandria Engineering Journal, 63, 11–16. https://www.sciencedirect.com/science/article/ pii/S1110016822005233 |
| 3 | Al-Dhaifallah, M., Kanagaraj, N., & Nisar, K. S. (2018). Fuzzy Fractional-Order PID Controller for Fractional Model of Pneumatic Pressure System. Mathematical Problems in Engineering, 2018, 5478781. https://onlinelibrary.wiley.com/doi/full/10.1155/2018/5478781 |
| 4 | Arya, Y. (2017). AGC performance enrichment of multi-source hydrothermal gas power systems using new optimized FOFPID controller and redox �low batteries. Energy, 127, 704– 715. https://www.sciencedirect.com/science/article/abs/pii/S0360544217305212 |
| 5 | Baboshkin, G. D., Podsizertsev, M. A., & Baboshkina, A. A. (2018). Optimizatsiya parametrov PID-regulyatora drobnogo poryadka s pomoshchyu geneticheskogo algoritma [Optimization of fractional-order PID controller parameters using genetic algorithm]. In Integration of Science, Society, Production and Industry (pp. 8–11). https://www.elibrary.ru/ item.asp?id=34888693 |
| 6 | Bhimte, R., Bhole-Ingale, K., Shah, P., & Sekhar, R. (2020, December). Precise position control of quanser servomotor using fractional order fuzzy PID controller. In 2020 IEEE Bombay Section Signature Conference (IBSSC) (pp. 58–63). IEEE. https://ieeexplore.ieee.org/ abstract/document/9332216 |
| 7 | Botirov, T., Sodiqov, B., Jumabaev, E., Salahiddinov, A., & Jurayeva, R. (2025). Design of a controller with an intelligent hybrid structure. In E3S Web of Conferences, 627, 04007. https://www.e3s-conferences.org/articles/e3sconf/abs/2025/27/e3sconf_ geotech2025_04007/e3sconf_geotech2025_04007.html |
| 8 | Dembri, R., Rahmani, L., Babes, B., Zaini, H. G., Ghoneim, S. S., Bojer, A. K., & Sharaf, A. B. A. (2024). SSO optimized FOFPID regulator design for performance enhancement of doubly fed induction generator based wind turbine system. Scientific Reports, 14(1), 28305. https:// www.nature.com/articles/s41598-024-76457-z |
| 9 | Grinyuk, D. A., Oliferovich, N. M., Karaban, M. A., & Novitskaya, D. O. (2024). Praktika nastroiki PID-regulyatorov [Practice of PID controller tuning]. https://elib.belstu.by/ handle/123456789/66913 |
| 10 | Karahan, O. (2021). Design of optimal fractional order fuzzy PID controller based on cuckoo search algorithm for core power control in molten salt reactors. Progress in Nuclear Energy, 139, 103868. https://www.sciencedirect.com/science/article/pii/ S0149197021002316 |
| 11 | Karamasheva, S. M. (2021). Issledovaniye rezhimov raboty gidrogeneratora s PID- kontrollerom drobnogo poryadka [Study of operation modes of hydrogenerator with fractional-order PID controller] (Doctoral dissertation, Siberian Federal University, Sayano- Shushensk Branch). https://elib.sfu-kras.ru/handle/2311/141901 |
| 12 | Kumar, V., & Rana, K. P. S. (2017). Nonlinear adaptive fractional order fuzzy PID control of a 2-link planar rigid manipulator with payload. Journal of the Franklin Institute, 354(2), 993–1022. https://www.sciencedirect.com/science/article/abs/pii/S0016003216304227 |
| 13 | Mahmudov, G. (2024). Bioreaktor uchun noravshan rostlagichning qoidalar bazasini ishlab chiqish [Development of rule base of fuzzy controller for bioreactor]. Journal of Advances in Engineering Technology, (2), 27–32. https://cyberleninka.ru/article/n/ bioreaktor-uchun-noravshan-rostlagichning-qoidalar-bazasini-ishlab-chiqish |
| 14 | Mao, W. L., Chen, S. H., & Kao, C. Y. (2024). Fractional-Order Fuzzy PID Controller with Evolutionary Computation for an Effective Synchronized Gantry System. Algorithms, 17(2), 58. https://www.mdpi.com/1999-4893/17/2/58 |
| 15 | Mishra, S., Patel, S., Prusty, R. C., & Panda, S. (2020). MVO optimized hybrid FOFPID- LQG controller for load frequency control of an AC micro-grid system. World Journal of Engineering, 17(5), 675–686. https://www.emerald.com/insight/content/doi/10.1108/wje- 05-2019-0142/full/html |
| 16 | Oprzędkiewicz, K., Rosół, M., & Żegleń Włodarczyk, J. (2021). The frequency and real time properties of the microcontroller implementation of fractional order PID controller. Electronics, 10(5), 524. https://www.mdpi.com/2079-9292/10/5/524 |
| 17 | Polyak, B. T., & Khlebnikov, M. V. (2022). Novyye kriterii nastroiki PID-regulyatorov [New criteria for PID controller tuning]. Automation and Remote Control, (11), 62–82. https:// www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=15968&option_ lang=rus |
| 18 | Ren, H. P., Fan, J. T., & Kaynak, O. (2018). Optimal design of a fractional-order proportional-integer-differential controller for a pneumatic position servo system. IEEE Transactions on Industrial Electronics, 66(8), 6220–6229. https://ieeexplore.ieee.org/ abstract/document/8469163 |
| 19 | Zamani, A. A., Tavakoli, S., Etedali, S., & Sadeghi, J. (2018). Online tuning of fractional order fuzzy PID controller in smart seismic isolated structures. Bulletin of Earthquake Engineering, 16, 3153–3170. https://link.springer.com/article/10.1007/s10518-017-0294-4 |
| 20 | Zhalilova, A. A., & Avsievich, A. V. (2023). Issledovaniye metodov i analiz nastroiki parametrov PID-regulyatora drobnogo poryadka [Study of methods and analysis of fractional- order PID controller parameter tuning]. In Mechatronics, Automation and Transport Control (pp. 35–40). https://www.elibrary.ru/item.asp?id=50419792 |