Harakatdagi poyezdlar oldidagi to‘siqlarni aniqlash usulini zamonaviy LiDAR texnologiyasi asosida mahalliylashtirish bugungi kunda O‘zbekiston temir yo‘llari AJ oldida turgan dolzarb muammolardan biridir. Shunga qaramay, temir yo‘l stansiyasi platformalari, temir yo‘l izlari yoki temir yo‘l kesishmalari temir yo‘llardagi asosiy xavfsizlik muammolaridan sanaladi. Afsuski, har yili yuzlab odamlar oldini olishi mumkin bo‘lgan to‘qnashuvlar oqibatida hayotdan ko‘z
yumadi. Bunday holatlar ko‘pincha yuqorida sanab o‘tilgan temir yo‘l obyektlarida yuz beradi. Ushbu maqolada yo‘lovchilarni ogohlantirishda yangi zamonaviy LiDAR texnologiyasidan foydalangan holda, temir yo‘l obyektlarida yo‘lovchilarni aniqlash hamda lokomotiv mashinisti va yo‘lovchilarni xavfdan ogohlantirish usuli, shuningdek, harakatdagi poyezdlar oldidagi to‘siqlarni aniqlash usulini zamonaviy LiDAR texnologiyasi asosida mahalliylashtirish masalasining yechimi ko‘rib chiqilgan. Shuningdek, LiDAR tizimining asosiy komponenti sifatida WT200A lazer sensori qo‘llanadi. Mazkur sensor uzoq masofali aniqlash imkoniyatiga ega bo‘lib, 200 metrgacha bo‘lgan oraliqda joylashgan to‘siqlarni aniqlay oladi. Sensor 905 nanometr to‘lqin uzunligiga ega lazer nurlaridan foydalanib, turli ob-havo sharoitlarida, jumladan, tuman, yomg‘ir yoki qorli holatlarda ham yuqori aniqlikda ishlash imkonini beradi. WT200A sensori temir yo‘l izlaridagi to‘siqlarni tezda aniqlab, poyezd dispetcheriga xavf haqida ogohlantirish yuboradi. Bu esa temir yo‘l transportida xavfsizlikni ta’minlashda muhim ahamiyat kasb etadi.
Harakatdagi poyezdlar oldidagi to‘siqlarni aniqlash usulini zamonaviy LiDAR texnologiyasi asosida mahalliylashtirish bugungi kunda O‘zbekiston temir yo‘llari AJ oldida turgan dolzarb muammolardan biridir. Shunga qaramay, temir yo‘l stansiyasi platformalari, temir yo‘l izlari yoki temir yo‘l kesishmalari temir yo‘llardagi asosiy xavfsizlik muammolaridan sanaladi. Afsuski, har yili yuzlab odamlar oldini olishi mumkin bo‘lgan to‘qnashuvlar oqibatida hayotdan ko‘z
yumadi. Bunday holatlar ko‘pincha yuqorida sanab o‘tilgan temir yo‘l obyektlarida yuz beradi. Ushbu maqolada yo‘lovchilarni ogohlantirishda yangi zamonaviy LiDAR texnologiyasidan foydalangan holda, temir yo‘l obyektlarida yo‘lovchilarni aniqlash hamda lokomotiv mashinisti va yo‘lovchilarni xavfdan ogohlantirish usuli, shuningdek, harakatdagi poyezdlar oldidagi to‘siqlarni aniqlash usulini zamonaviy LiDAR texnologiyasi asosida mahalliylashtirish masalasining yechimi ko‘rib chiqilgan. Shuningdek, LiDAR tizimining asosiy komponenti sifatida WT200A lazer sensori qo‘llanadi. Mazkur sensor uzoq masofali aniqlash imkoniyatiga ega bo‘lib, 200 metrgacha bo‘lgan oraliqda joylashgan to‘siqlarni aniqlay oladi. Sensor 905 nanometr to‘lqin uzunligiga ega lazer nurlaridan foydalanib, turli ob-havo sharoitlarida, jumladan, tuman, yomg‘ir yoki qorli holatlarda ham yuqori aniqlikda ishlash imkonini beradi. WT200A sensori temir yo‘l izlaridagi to‘siqlarni tezda aniqlab, poyezd dispetcheriga xavf haqida ogohlantirish yuboradi. Bu esa temir yo‘l transportida xavfsizlikni ta’minlashda muhim ahamiyat kasb etadi.
Локализация метода обнаружения препятствий перед движущимися поездами на основе современной технологии LiDAR является одной из актуальных задач, стоящих сегодня перед АО «Узбекистон темир йуллари». Платформы железнодорожных станций, пути и переезды
относятся к основным проблемным зонам с точки зрения безопасности на железной дороге. К сожалению, ежегодно сотни людей погибают в
результате столкновений, которых можно было бы избежать. Подобные случаи чаще всего происходят именно в перечисленных объектах
железнодорожной инфраструктуры. В данной статье рассматривается решение задачи обнаружения препятствий перед поездами, а также
идентификации людей на железнодорожных объектах и предупреждения машинистов и пассажиров об опасности с использованием LiDAR-технологии. Основным компонентом LiDAR-системы выступает лазерный сенсор WT200A, обладающий способностью дальнего обнаружения препятствий на расстоянии до 200 метров. Сенсор использует лазерные лучи с длиной волны 905 нанометров, что позволяет ему эффективно работать при любых погодных условиях – в тумане, дожде или снегу. WT200A оперативно выявляет препятствия на железнодорожных путях и отправляет предупреждение о возможной опасности диспетчеру поезда. Это играет важную роль в обеспечении безопасности железнодорожного транспорта.
Currently, one of the urgent problems facing Uzbekistan Railways JSC is localizing the method for detecting obstacles in front of moving trains using modern LiDAR technology. Railway station platforms, tracks, and intersections are among the main safety issues on the railways. Regrettably, preventable collisions claim the lives of hundreds of people each year. Often, these incidents take place in the previously mentioned railway areas. This article explores the use of modern LiDAR technology to identify passengers at railway facilities and warn both locomotive operators and passengers of potential danger. It also addresses the localization of obstacle detection in front of moving trains using this technology. The WT200A laser sensor is applied as the main component of the LiDAR system. This sensor is capable of long-range detection – up to 200 meters – and utilizes laser beams with a wavelength of 905 nanometers. It ensures high-accuracy operation even under various weather conditions such as fog, rain, or snow. The WT200A sensor can
rapidly detect obstacles on railway tracks and send hazard warnings to the train dispatcher, thus playing a critical role in enhancing railway safety.
| № | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
|---|---|---|---|
| 1 | Boltayev S.T. | texnika fanlari nomzodi, professor | Toshkent davlat transport universiteti |
| 2 | Toshboyev Z.B. | texnika fanlari bo‘yicha falsafa doktori (PhD), dotsent | Toshkent davlat transport universiteti |
| 3 | Yoldashev I.A. | tayanch doktorant | Toshkent davlat transport universiteti |
| № | Havola nomi |
|---|---|
| 1 | Boltaev, S. T., & Toshboyev, Z. B., Yo'ldashev, I.A (2025). Warning systems about approaching trains for moving pedestrians at railway stations. In Proceedings of the “Young Scientific Researcher – 2025” IV International Scientific and Technical Conference. |
| 2 | Boltaev, S. T., Rakhmonov, B. B., Muhiddinov, O. O., Saitov, A. A., & Toshboyev, Z. B. (2021). Development of a block model for intelligent control of the position of the switches operating apparatus in the electrical interlocking system. CONMECHYDRO, (365). |
| 3 | Boltayev, S. T., Kosimova, Q. A., & Valiyev, S. I. (2022). Method and algorithm of the automatic warning system of train approaches to railway. Proceedings of the International Conference on Industrial Engineering, Application and Manufacturing (ICIEAM). https://doi.org/10.1109/ ICIEAM54945.2022.9787181 |
| 4 | Christina, M., Mairlyn, G., & Jonathan, J. (n.d.). Human factors issues of accidents at passively controlled rural level crossings. https://doi.org/10.3141/2458-12 |
| 5 | Huang, L. (2020). The past, present and future of railway interlocking system. In 2020 IEEE 5th International Conference on Intelligent Transportation Engineering (ICITE) (pp. 170–174). IEEE. https://doi.org/10.1109/ICITE50838.2020.9231438 |
| 6 | Nateghinia, E., & Luis, F. (2025). Development of an unsupervised 3D LiDAR-based methodology for automated safety monitoring of railway facilities. International Journal of Transportation Science and Technology. https://doi.org/10.1016/j.ijtst.2025.01.011 |
| 7 | Seminatore, A. A., & Ghelardoni, L. (2012). A railway automatic track warning system based on distributed personal mobile terminals. Procedia - Social and Behavioral Sciences, 48, 2081–2090. |
| 8 | Shen, T., Zhou, J., & Yuan, T. (2024). LiDAR-based urban three-dimensional rail area extraction for improved train collision warnings. Sensors (Basel), 24(15), 4963. https://doi.org/10.3390/ s24154963 |
| 9 | Stein, D., Spindler, M., & Kuper, J. (2016). Rail detection using LiDAR sensors. [Journal name missing], 11(1), 65–78. |
| 10 | Susana, D., Sousa, P., & Afonso, F. (2024). A LiDAR based obstacle detection framework for railway. EPJ Web of Conferences, 305, 00027. https://doi.org/10.1051/epjconf/202430500027 |
| 11 | Teeg, G., & Vlasenko, S. (2009). Systems of automation and telemechanics on the railways of the world (475 p.). Intext Eurailpress. |
| 12 | Teshima, H., Hori, S., Sakikawa, S., & Sato, N. (2017). Railway track layout modeling and its application to an automatic route setting system. IEEJ Transactions on Electronics, Information and Systems, 137(3), 474–481. https://doi.org/10.1541/ieejeiss.137.474 |
| 13 | Teshima, H., Hori, S., Shimura, A., & Sato, N. (2014). Railway track layout modelling and its application to an automatic route setting system. WIT Transactions on the Built Environment, 135, 75– 86. https://doi.org/10.2495/CR140061 |
| 14 | Yang, Y., Wang, C., & Liu, X. (2025). High-precision laser monitoring system with enhanced non-uniform scanning for railway safety. Railway Engineering Science, 33(1), 79–93. https://doi. org/10.1007/s40534-024-00351-7 |
| 15 | Yasui, Y. (2006). Automatic train operation system for the high speed Shinkansen train. WIT Transactions on the Built Environment, 88, 441–446. https://doi.org/10.2495/CR060441 |