16

Ushbu ilmiy maqolada hisoblash suyuqliklari dinamikasi (CFD) usuli asosida gelioquritgichlarda issiqlik va havo oqimi jarayonlari modellashtirildi hamda dorivor o‘simlik – katta bargizub (Plantago major) barglarini samarali va sifatli quritish imkoniyatlari o‘rganildi. Tadqiqotning asosiy maqsadi gelioquritgichlar konstruksiyasini optimallashtirish, quritish tezligini oshirish va mahsulot sifatini saqlab qolish uchun CFD texnologiyalari imkoniyatlarini baholashdan iborat. ANSYS Fluent dasturi yordamida quritgich ichidagi issiqlik taqsimoti, havo oqimi tezligi va harorat gradientlari modellashtirildi. Simulyatsiya shartlariga ko‘ra, quyosh energiyasi asosida isitiladigan havo harorati 55–65 °C oralig‘ida saqlanib, mahsulot ustiga yo‘naltirildi. Quritilayotgan bargizub barglarining boshlang‘ich namligi 82 %ni tashkil etdi va 3,5–4,5 soatlik quritish davomida bu ko‘rsatkich 10–12 %gacha kamaydi. CFD modellashtirish natijalari quyidagi ustunliklarni ko‘rsatdi: havo oqimi quritgich ichida bir xilda taqsimlanib, barcha barglar teng issiqlik ta’siriga uchradi; issiqlik energiyasining samarali ishlatilishi natijasida quritish muddati qisqardi; quritilgan mahsulotda biologik faol birikmalar (flavonoidlar, vitaminlar) saqlanishi ta’minlandi; quritgichning ichki geometriyasi, havo kirish va chiqish yo‘llari CFD asosida tahlil qilinib, loyihaning takomillashuvi uchun tavsiyalar ishlab chiqildi. Simulyatsiya natijalari eksperimental kuzatuvlar bilan solishtirildi va yuqori darajadagi moslik qayd etildi. CFD texnologiyasi yordamida ishlab chiqilgan model orqali gelioquritkichlarning samaradorligi oshirildi, quritish sifati yaxshilandi va issiqlik yo‘qotishlari minimallashtirildi. Mazkur tadqiqothisoblash suyuqliklari dinamikasi asosidagi yondashuvning dorivor o‘simliklar uchun mo‘ljallangan gelioquritgichlarni ilmiy loyihalash va amaliyotga joriy etishdagi yuqori salohiyatga ega ekanligini ko‘rsatadi.

  • Internet havola
  • DOI
  • UzSCI tizimida yaratilgan sana 22-10-2025
  • O'qishlar soni 16
  • Nashr sanasi 17-10-2025
  • Asosiy tilO'zbek
  • Sahifalar20-31
Ўзбек

Ushbu ilmiy maqolada hisoblash suyuqliklari dinamikasi (CFD) usuli asosida gelioquritgichlarda issiqlik va havo oqimi jarayonlari modellashtirildi hamda dorivor o‘simlik – katta bargizub (Plantago major) barglarini samarali va sifatli quritish imkoniyatlari o‘rganildi. Tadqiqotning asosiy maqsadi gelioquritgichlar konstruksiyasini optimallashtirish, quritish tezligini oshirish va mahsulot sifatini saqlab qolish uchun CFD texnologiyalari imkoniyatlarini baholashdan iborat. ANSYS Fluent dasturi yordamida quritgich ichidagi issiqlik taqsimoti, havo oqimi tezligi va harorat gradientlari modellashtirildi. Simulyatsiya shartlariga ko‘ra, quyosh energiyasi asosida isitiladigan havo harorati 55–65 °C oralig‘ida saqlanib, mahsulot ustiga yo‘naltirildi. Quritilayotgan bargizub barglarining boshlang‘ich namligi 82 %ni tashkil etdi va 3,5–4,5 soatlik quritish davomida bu ko‘rsatkich 10–12 %gacha kamaydi. CFD modellashtirish natijalari quyidagi ustunliklarni ko‘rsatdi: havo oqimi quritgich ichida bir xilda taqsimlanib, barcha barglar teng issiqlik ta’siriga uchradi; issiqlik energiyasining samarali ishlatilishi natijasida quritish muddati qisqardi; quritilgan mahsulotda biologik faol birikmalar (flavonoidlar, vitaminlar) saqlanishi ta’minlandi; quritgichning ichki geometriyasi, havo kirish va chiqish yo‘llari CFD asosida tahlil qilinib, loyihaning takomillashuvi uchun tavsiyalar ishlab chiqildi. Simulyatsiya natijalari eksperimental kuzatuvlar bilan solishtirildi va yuqori darajadagi moslik qayd etildi. CFD texnologiyasi yordamida ishlab chiqilgan model orqali gelioquritkichlarning samaradorligi oshirildi, quritish sifati yaxshilandi va issiqlik yo‘qotishlari minimallashtirildi. Mazkur tadqiqothisoblash suyuqliklari dinamikasi asosidagi yondashuvning dorivor o‘simliklar uchun mo‘ljallangan gelioquritgichlarni ilmiy loyihalash va amaliyotga joriy etishdagi yuqori salohiyatga ega ekanligini ko‘rsatadi.

Русский

 В данной научной статье с использованием метода вычислительной гидродинамики (CFD) смоделированы процессы теплообмена и движения воздушных потоков в гелиосушилках, а также изучены возможности эффективной и качественной сушки лекарственного 
растения – большого подорожника (Plantago major). Основная цель исследования заключается в оптимизации конструкции гелиосушилок, повышении скорости сушки и сохранении качества готового продукта за счёт применения технологий CFD. С использованием программного пакета ANSYS Fluent была проведена модельная симуляция распределения тепла, скорости воздушного потока и температурных градиентов внутри сушильной установки. Согласно условиям моделирования, нагреваемый  солнечной энергией воздух поддерживался в диапазоне температур 55–65 °C и направлялся непосредственно на продукт. Начальная влажность листьев подорожника составляла 82 %, и в течение 3,5–4,5 часов процесса сушки показатель снижался до 10–12 %. Результаты CFD-моделирования выявили следующие преимущества: равномерное распределение воздушного потока внутри сушильной камеры, что обеспечивало одинаковое тепловое воздействие на все листья; эффективное использование тепловой 
энергии, что способствовало сокращению продолжительности процесса сушки; сохранение биологически активных соединений (флавоноидов, витаминов) в готовом продукте; проведён анализ внутренней геометрии сушильной установки, а также входных и выходных каналов воздуха с использованием CFD, на основе чего были выработаны рекомендации для совершенствования конструкции. Сопоставление результатов численного моделирования с данными экспериментальных наблюдений показало 
высокую степень совпадения. Применение CFD-технологий позволило повысить эффективность работы гелиосушилок, улучшить качество процесса сушки и минимизировать тепловые потери. Представленные результаты демонстрируют высокий потенциал подхода, основанного на вычислительной гидродинамике, для научного проектирования и внедрения гелиосушилок, предназначенных для обработки лекарственных растений.

English

In this scientific article, the processes of heat transfer and airflow in solar dryers were simulated using the Computational Fluid Dynamics 
(CFD) method, and the possibilities of effective and high-quality drying of the medicinal plant — Plantago major (common plantain) — were investigated. The main purpose of the study was to optimize the solar dryer design, increase the drying rate, and preserve product quality through the use of CFD technologies. Using the ANSYS Fluent software, the internal temperature distribution, airflow velocity, and temperature gradients within the drying chamber were modeled. According to the simulation conditions, the air heated by solar energy was maintained within the temperature range of 55–65 °C and directed onto the product being dried. The initial moisture content of the plantain leaves was 82%, and after 3.5–4.5 hours of drying, it decreased to 10–12%. The CFD simulation results demonstrated the following advantages: the airflow was uniformly distributed within the dryer, ensuring equal thermal exposure to all leaves; efficient use of thermal energy led to a reduced drying time; the retention of biologically active compounds (flavonoids, vitamins) in the dried product was ensured; based on CFD analysis, recommendations were developed for improving the internal geometry of the dryer and the design of the air inlet and outlet channels. The simulation results were compared with experimental observations, and a high degree of agreement was recorded. The 
CFD-based model significantly improved the dryer’s efficiency, enhanced drying quality, and minimized heat losses. This study demonstrates the high potential of CFD-based approaches for the scientific design and practical implementation of solar dryers intended for drying medicinal plants.

Muallifning F.I.Sh. Lavozimi Tashkilot nomi
1 Usmanov K.I. texnika fanlari bo‘yicha falsafa doktori (PhD), dotsent, Аvtоmаtlаshtirish vа rаqаmli bоshqаruv kаfedrаsi mudiri Tоshkent kimуо-teхnоlоgiуа instituti
Havola nomi
1 Abduvaxitovna, S. S., & Isroilovich, U. K. (2024). Dorivor o‘simliklarni gelioquritish qurilmasida quritish jarayonini matematik modellashtirish. Ilm-Fan va Innovatsion Rivojlanish / Наука и Инновационное Развитие, 7(4), Article 4.
2 Barghi Jahromi, M. S., Kalantar, V., Samimi Akhijahani, H., & Kargarsharifabad, H. (2022). Recent progress on solar cabinet dryers for agricultural products equipped with energy storage using phase change materials. Journal of Energy Storage, 51, 104434. https://doi.org/10.1016/j. est.2022.104434
3 Chavan, A., Vitankar, V., Shinde, N., & Thorat, B. (2021). CFD simulation of solar grain dryer. Drying Technology, 39(8), 1101–1113. https://doi.org/10.1080/07373937.2020.1863422
4 Demissie, P., Hayelom, M., Kassaye, A., Hailesilassie, A., Gebrehiwot, M., & Vanierschot, M. (2019). Design, development and CFD modeling of indirect solar food dryer. Energy Procedia, 158, 1128–1134. https://doi.org/10.1016/j.egypro.2019.01.278
5 Department of Mechanical/Production Engineering, Abubakar Tafawa Balewa University, Ternenge Abur, B., Dandakouta, H., Department of Mechanical/Production Engineering, Abubakar Tafawa Balewa University, A. B, A., Department of Mechanical/Production Engineering, Abubakar Tafawa Balewa University, R.I, E., & Department of Mechanical/Production Engineering, Abubakar Tafawa Balewa University. (2020). Modeling and Simulation of an Indirect Natural Convection Solar Dryer with Thermal Storage Bed. International Journal of Engineering and Manufacturing, 10(4), 24– 42. https://doi.org/10.5815/ijem.2020.04.03
6 Ergun, F. (2023). EFFECTS OF DRYING METHODS ON AMOUNTS OF PHENOLIC AND FLAVONOID COMPOUNDS AND ANTIOXIDANT CAPACITY OF PLANTAGO LANCEOLATA L. The Journal of Animal and Plant Sciences, 1, 159–165. https://doi.org/10.36899/JAPS.2023.1.0604
7 Eshbobaev, J., Norkobilov, A., Usmanov, K., Khamidov, B., Kodirov, O., & Avezov, T. (2024). Control of Wastewater Treatment Processes Using a Fuzzy Logic Approach. The 3rd International Electronic Conference on Processes, 39. https://doi.org/10.3390/engproc2024067039
8 Getahun, E., Delele, M. A., Gabbiye, N., Fanta, S. W., Demissie, P., & Vanierschot, M. (2021). Importance of integrated CFD and product quality modeling of solar dryers for fruits and vegetables: A review. Solar Energy, 220, 88–110. https://doi.org/10.1016/j.solener.2021.03.049
9 Hamdi, I., Kooli, S., Elkhadraoui, A., Azaizia, Z., Abdelhamid, F., & Guizani, A. (2018). Experimental study and numerical modeling for drying grapes under solar greenhouse. Renewable Energy, 127, 936–946. https://doi.org/10.1016/j.renene.2018.05.027
10 Rejabov, S., Usmonov, B., Usmanov, K., & Artikov, A. (2024). Experimental Comparison of Open Sun and Indirect Convection Solar Drying Methods for Apricots in Uzbekistan. The 3rd International Electronic Conference on Processes, 26. https://doi.org/10.3390/engproc2024067026
11 Rejabov Sarvar Abdurasulovich, Usmonov Botir Shukurillayevich, & Artikov Asqar Asqarovich (2024). Oʻrik mevasini majburiy konveksiyali quyosh quritgichida quritish vaqtini hisoblash. Илм-фан ва инновацион ривожланиш / Наука и инновационное развитие, 7 (2), 48-60.
12 Romero, V. M., Cerezo, E., Garcia, M. I., & Sanchez, M. H. (2014). Simulation and Validation of Vanilla Drying Process in an Indirect Solar Dryer Prototype Using CFD Fluent Program. Energy Procedia, 57, 1651–1658. https://doi.org/10.1016/j.egypro.2014.10.156
13 Shaxnoza, S. (2017). Technology of Drying Medicinal Plants in Water-Heating Drying Installation. Agricultural Research & Technology: Open Access Journal, 9(5). https://doi.org/10.19080/ ARTOAJ.2017.09.555771
14 Sultanova, S., Usmanov, K., Ungbayeva, D., & Tadjibayeva, D. (2024). Development of adaptive neural-fuzzy models for predicting solar dryer performance. Universum: Technical Sciences, 122(5). https://doi.org/10.32743/UniTech.2024.122.5.17503
15 Usmanov, K. I., Yakubova, N. S., Urmanova, V. T., & Abdurasulova, G. E. (2023). Synthesis of a control system for the process of diesel fuel hydropuring with the Adar method. E3S Web of Conferences, 458, 01025. https://doi.org/10.1051/e3sconf/202345801025
16 Usmanov, K., Islamova, F., Rejabov, S., & Jabborov, A. (2024). MODELING THE DRYING OF MEDICINAL PLANTS IN A CABINET SOLAR DRYER. Universum: Technical Sciences, 129(12). https:// doi.org/10.32743/UniTech.2024.129.12.18979
17 Usmanov, K., Sultanova, S., Ungbayeva, D., & Maksudova, A. (2025). DYNAMIC MODELING AND THIN-LAYER DRYING OF PLANTAIN LEAVES IN SOLAR DRYERS. Universum: Technical Sciences, 130(1). https://doi.org/10.32743/UniTech.2025.130.1.19087
18 Vigneswaran, V. S., Ajithkumar, A., GaneshKumar, P., Sudhakar, P., Meikandan, M., Kumaresan, G., & Shanmugam, M. (2024). Comparative assessment of indirect cabinet solar dryers in various operating modes versus direct cabinet dryers: A techno-economic analysis. Solar Energy, 268, 112266. https://doi.org/10.1016/j.solener.2023.112266
19 Yakubova, N. (2023). INVESTIGATION OF FUZZY CONTROLLERS IN INTELLIGENT CONTROL SYSTEMS BASED ON QUANTUM COMPUTING. Universum: Technical Sciences, 108(3). https://doi. org/10.32743/UniTech.2023.108.3.15148
20 Yakubova, N. (2024). DINAMIK OBEKTLARNING BOSHQARISH TIZIMLARINI KVANT ALGORITMLARI YORDAMIDA TADQIQ ETISH. SCIENCE AND INNOVATIVE DEVELOPMENT, 7(1), 32-44.
21 Артиков, А. А., & Машарипова, З. А. (2016). Оптимальное программное управление процессом сушки при использовании микроволновой энергии. Хранение и переработка сельхозсырья, (3), 27-29.
22 Сидиков Исомиддин Хакимович, Усманов Комил Исроилович, Якубова Ноилахон Собиржоновна, & Казахбаев Сапарбай Атабаевич. (2020). НЕЧЕТКОЕ СИНЕРГЕТИЧЕСКОЕ УПРАВЛЕНИЕ НЕЛИНЕЙНЫХ СИСТЕМ. https://doi.org/10.24412/2181-1431-2020-2-16-19
Kutilmoqda