So‘nggi yillarda dunyo barqaror va ekologik toza energiya manbalari yaratishga qaratilgan texnologiyalarning jadal rivojlanishiga guvoh bo‘lmoqda. Mazkur yo‘nalishdagi eng muhim qadamlardan biri transport vositalari, jumladan, elektromobillarning keng ishlab chiqarilishidir. Hozirgi kunda elektromobillar tobora ommalashib bormoqda. Akkumulyatorlarning notekis zaryadlanishi va razryadlanishi batareyaning ishlash samaradorligiga salbiy ta’sir ko‘rsatadi, zaryad va razryad vaqtining uzayishiga olib keladi hamda uning xizmat muddatini qisqartirishi mumkin. Tadqiqotning predmeti sifatida litiy-ion akkumulyatorlarining ekspluatatsiya jarayonida o‘zgarish qonuniyatlari olingan. Ushbu tadqiqotning maqsadi litiy-ion akkumulyatorlarini muvozanatlash tizimining matematik modelini ishlab chiqishdan iborat bo‘lib, bunda faol va passiv muvozanatlash usullarining samaradorligini taqqoslash asos qilib olindi. Tadqiqot nazariy va amaliy jihatlarni, jumladan, loyihalash, sinovdan o‘tkazish va amaliyotga joriy etish masalalarini o‘z ichiga oladi. Maqolada akkumulyator batareyalarini boshqarish tizimining asosiy elementi bo‘lgan balansirovka qilishning mavjud usullari tahlili keltirilgan. Ko‘rib chiqilgan usullar amalga oshirish tamoyiliga ko‘ra, passiv va aktiv turlarga ajratildi. Bu esa ularning texnik xususiyatlari, afzalliklari va cheklovlarini aniqlash imkonini berdi. Muvozanatlash usulini tanlash bevosita qo‘llanish sohasi, aniqlik, tezlik va energiya samaradorligiga bo‘lgan talablariga bog‘liq. Oddiy iste’molchi qurilmalari uchun passiv strategiyalardan foydalanish maqsadga muvofiq bo‘lsa, elektromobillar kabi
muhim tizimlar uchun aktiv usullarga ustuvorlik berilishi lozim. Tajriba tadqiqotlari induktiv o‘zgartirgich asosidagi aktiv balansirovka tizimining litiy-ion akkumulyator moduli (zaryad, razryad, yuqori tok, yuqori harorat)ning real ekspluatatsiya sharoitlarida amaliy samaradorligi va ishonchliligini to‘liq tasdiqladi. Ushbu tizim kuchlanish disbalansi muammosini muvaffaqiyatli bartaraf etadi, foydali sig‘imni oshiradi, batareyaning xizmat muddatini uzaytiradi va xavfsizlikni ta’minlaydi.
So‘nggi yillarda dunyo barqaror va ekologik toza energiya manbalari yaratishga qaratilgan texnologiyalarning jadal rivojlanishiga guvoh bo‘lmoqda. Mazkur yo‘nalishdagi eng muhim qadamlardan biri transport vositalari, jumladan, elektromobillarning keng ishlab chiqarilishidir. Hozirgi kunda elektromobillar tobora ommalashib bormoqda. Akkumulyatorlarning notekis zaryadlanishi va razryadlanishi batareyaning ishlash samaradorligiga salbiy ta’sir ko‘rsatadi, zaryad va razryad vaqtining uzayishiga olib keladi hamda uning xizmat muddatini qisqartirishi mumkin. Tadqiqotning predmeti sifatida litiy-ion akkumulyatorlarining ekspluatatsiya jarayonida o‘zgarish qonuniyatlari olingan. Ushbu tadqiqotning maqsadi litiy-ion akkumulyatorlarini muvozanatlash tizimining matematik modelini ishlab chiqishdan iborat bo‘lib, bunda faol va passiv muvozanatlash usullarining samaradorligini taqqoslash asos qilib olindi. Tadqiqot nazariy va amaliy jihatlarni, jumladan, loyihalash, sinovdan o‘tkazish va amaliyotga joriy etish masalalarini o‘z ichiga oladi. Maqolada akkumulyator batareyalarini boshqarish tizimining asosiy elementi bo‘lgan balansirovka qilishning mavjud usullari tahlili keltirilgan. Ko‘rib chiqilgan usullar amalga oshirish tamoyiliga ko‘ra, passiv va aktiv turlarga ajratildi. Bu esa ularning texnik xususiyatlari, afzalliklari va cheklovlarini aniqlash imkonini berdi. Muvozanatlash usulini tanlash bevosita qo‘llanish sohasi, aniqlik, tezlik va energiya samaradorligiga bo‘lgan talablariga bog‘liq. Oddiy iste’molchi qurilmalari uchun passiv strategiyalardan foydalanish maqsadga muvofiq bo‘lsa, elektromobillar kabi
muhim tizimlar uchun aktiv usullarga ustuvorlik berilishi lozim. Tajriba tadqiqotlari induktiv o‘zgartirgich asosidagi aktiv balansirovka tizimining litiy-ion akkumulyator moduli (zaryad, razryad, yuqori tok, yuqori harorat)ning real ekspluatatsiya sharoitlarida amaliy samaradorligi va ishonchliligini to‘liq tasdiqladi. Ushbu tizim kuchlanish disbalansi muammosini muvaffaqiyatli bartaraf etadi, foydali sig‘imni oshiradi, batareyaning xizmat muddatini uzaytiradi va xavfsizlikni ta’minlaydi.
В последние годы мир наблюдает стремительное развитие технологий, направленных на создание устойчивых и экологически чистых источников энергии. Одним из важнейших шагов в данном направлении является широкое распространение транспортных средств, в том числе
электромобилей. На сегодняшний день электромобили становятся всё более популярными. Неравномерность процессов зарядки и разрядки приводит к снижению эффективности работы аккумуляторной батареи, увеличению времени зарядки и разрядки, а также может сокращать срок
её службы. Объектом исследования выступают закономерности изменения параметров литий-ионных аккумуляторов в процессе эксплуатации. Цель работы – разработка математической модели системы балансировки литий-ионных аккумуляторов, основанной на сравнении эффективности
активных и пассивных методов балансировки. Исследование включает теоретические и практические аспекты, охватывающие проектирование, испытания и внедрение. В статье проведён анализ существующих методов балансировки – ключевого элемента системы управления аккумуляторной
батареей. Исследуемые методы разделены на пассивные и активные в соответствии с принципами их реализации, что позволило определить их технические характеристики, преимущества и ограничения. Выбор метода балансировки зависит от области применения, требований к точности, скорости и энергоэффективности. Для бытовых устройств предпочтительны пассивные стратегии, тогда как для ответственных систем, таких как электромобили, целесообразно использование активных
методов. Экспериментальные исследования полностью подтвердили практическую эффективность и надёжность активной системы балансировки на основе индуктивного преобразователя в реальных условиях эксплуатации литий-ионного аккумуляторного модуля (заряд, разряд, высокий ток, высокая температура). Данная система успешно устраняет дисбаланс по напряжению, повышает полезную ёмкость, продлевает срок службы батареи и обеспечивает безопасность.
In recent years, the world has witnessed rapid development of technologies aimed at creating sustainable and environmentally friendly energy sources. One of the most important steps in this direction is the large-scale production of transportation means, including electric vehicles. Today, electric vehicles are becoming increasingly widespread. Uneven charging and discharging of battery cells negatively affects battery performance, increases charging and discharging time, and can shorten battery life. The subject of the study is the behavior of lithium-ion batteries during operation. The aim of the research is to develop a mathematical
model of a lithium-ion battery balancing system based on comparing the effectiveness of active and passive balancing methods. The study includes theoretical and practical aspects such as design, testing, and implementation. The article provides an analysis of existing balancing techniques — a key component of battery
management systems. The methods under consideration are classified into passive and active types according to their operating principles, which made it possible to determine their technical features, advantages, and limitations. The choice of a balancing method depends on the application area and requirements for accuracy,
speed, and energy efficiency. Passive strategies are suitable for consumer devices, whereas active methods are recommended for critical systems such as electric vehicles. Experimental studies confirmed the practical efficiency and reliability of the active balancing system based on an inductive converter under real operating
conditions of a lithium-ion battery module (charging, discharging, high current, high temperature). This system successfully eliminates voltage imbalance, increases usable capacity, extends battery life, and ensures safety.
| № | Muallifning F.I.Sh. | Lavozimi | Tashkilot nomi |
|---|---|---|---|
| 1 | Karimov A.A. | texnika fanlari bo‘yicha falsafa doktori (PhD), dotsent | Qarshi davlat texnika universiteti |
| 2 | Avazov D.S. | doktorant | Tver davlat texnika universiteti |
| № | Havola nomi |
|---|---|
| 1 | Ahmad, A. B., Ooi, C. A., Ishak, D., & Teh, J. (2019). Cell balancing topologies in battery energy storage systems: A review. International Conference on Communication, Computing and Electronics Systems, 547, 159–165 |
| 2 | Ashraf, A. (2024). Review of cell-balancing schemes for electric vehicle battery management systems. Energies, 17(6), 1271. https://doi.org/10.3390/en17061271 |
| 3 | Chavan, S. L. (2025). An effective passive cell balancing technique for lithium-ion battery [Journal/Conference unspecified]. https://doi.org/10.1016/j.ssomething |
| 4 | Grishchenko, A. G. (2021). Matematicheskoe modelirovanie i raschetnye issledovaniya protsessa zaryada tyagovoy litiy-ionnoy akkumuljatornoy batarei legkovogo elektromobilya [Mathematical modeling and computational studies of the charging process of a traction lithium-ion battery of a passenger electric vehicle]. Izvestiya TulGU. Tekhnicheskie nauki [Proceedings of Tula State University. Technical Sciences], (9), 549–555. |
| 5 | Itagi, A. R., Kallimani, R., Pai, K., Iyer, S., López, O. L. A., & Mutagekar, S. (2024). Cell balancing paradigms: Advanced types, algorithms, and optimization frameworks (arXiv:2411.05478). https:// arxiv.org/abs/2411.05478 |
| 6 | Khan, N. (2024). A critical review of battery cell balancing techniques. Energy Reports, 11, 4999. https://doi.org/10.1016/j.egyr.2024.01.010 |
| 7 | Martyushev, N. V. (2025). Modeling the reliability of an electric car battery while accounting for degradation processes. Mathematics, 13(11), 1832. https://doi.org/10.3390/math13111832 |
| 8 | Ospanbekov, B. K. (2017). Povyshenie energeticheskoy effektivnosti i ekspluatatsionnykh pokazateley elektromobiley [Improving energy efficiency and performance indicators of electric vehicles] (Candidate of Technical Sciences dissertation). |
| 9 | Salamati, S. M., Salamati, S. A., Mahoor, M., & Rajaei Salmasi, F. (2017). Leveraging adaptive model predictive controller for active cell balancing in Li-ion battery. [Journal title not provided — cannot translate without name]. |
| 10 | Shreasth, S., et al. (2025). A novel active lithium-ion cell balancing method based on state-of- power. Scientific Reports. https://doi.org/10.1038/s41598-025-96581-8 |
| 11 | Sidorov, K. M., Yutt, V. E., & Golubchik, T. V. (2013). Kombinirovannye energeticheskie ustanovki v sisteme avtonomnogo elektrosnabzheniya [Combined power plants in an autonomous power supply system]. Vestnik MADI [Bulletin of Moscow Automobile and Road Construction State Technical University (MADI)], (4), 37–44. |
| 12 | Sultan, Y. A., et al. (2025). Enhancing electric vehicle battery lifespan: Integrating active balancing and machine learning for precise RUL estimation. Scientific Reports. https://doi. org/10.1038/s41598-024-82778-w |
| 13 | Vardwaj, V., Vishakha, V., Jadoun, K., Jayalaksmi, N., & Agarwal, A. (2020). Various methods used for battery balancing in electric vehicles: A comprehensive review. In Proceedings of the 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) (pp. 208–213). |
| 14 | Xiong, R., Jiayi, C., Quonking, Y., Hongwen, H., & Sun, F. (2018). Critical review on the battery state of charge estimation methods for electric vehicles. IEEE Access, 6, 1832–1843. |
| 15 | Zhang, X. (2023). Mathematical modeling of the state of the battery of cargo electric vehicles operating in urban traffic. Mathematics, 11(3), 536. https://doi.org/10.3390/math11030536 |